35 research outputs found

    Non-invasive cardiac assessment in high risk patients (The GROUND study): rationale, objectives and design of a multi-center randomized controlled clinical trial

    Get PDF
    Background: Peripheral arterial disease (PAD) is a common disease associated with a considerably increased risk of future cardiovascular events and most of these patients will die from coronary artery disease (CAD). Screening for silent CAD has become an option with recent non-invasive developments in CT (computed tomography)-angiography and MR (magnetic resonance) stress testing. Screening in combination with more aggressive treatment may improve prognosis. Therefore we propose to study whether a cardiac imaging algorithm, using non-invasive imaging techniques followed by treatment will reduce the risk of cardiovascular disease in PAD patients free from cardiac symptoms. Design: The GROUND study is designed as a prospective, multi-center, randomized clinical trial. Patients with peripheral arterial disease, but without symptomatic cardiac disease will be asked to participate. All patients receive a proper risk factor management before randomization. Half of the recruited patients will enter the 'control group' and only undergo CT calcium scoring. The other half of the recruited patients (index group) will undergo the non invasive cardiac imaging algorithm followed by evidence-based treatment. First, patients are submitted to CT calcium scoring and CT angiography. Patients with a left main (or equivalent) coronary artery stenosis of > 50% on CT will be referred to a cardiologist without further imaging. All other patients in this group will undergo dobutamine stress magnetic resonance (DSMR) testing. Patients with a DSMR positive for ischemia will also be referred to a cardiologist. These patients are candidates for conventional coronary angiography and cardiac interventions (coronary artery bypass grafting (CABG) or percutaneous cardiac interventions (PCI)), if indicated. All participants of the trial will enter a 5 year follow up period for the occurrence of cardiovascular events. Sequential interim analysis will take place. Based on sample size calculations about 1200 patients are needed to detect a 24% reduction in primary outcome. Implications: The GROUND study will provide insight into the question whether non-invasive cardiac imaging reduces the risk of cardiovascular events in patients with peripheral arterial disease, but without symptoms of coronary artery disease. Trial registration: Clinicaltrials.gov NCT0018911

    Muscle Dystroglycan Organizes the Postsynapse and Regulates Presynaptic Neurotransmitter Release at the Drosophila Neuromuscular Junction

    Get PDF
    International audienceBACKGROUND: The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. CONCLUSION/SIGNIFICANCE: Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg
    corecore