23 research outputs found

    The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa

    Get PDF
    BACKGROUND In southern Africa, conservation agriculture (CA) has received a lot of research and promotional support from various organizations in the past decades. Conservation agriculture is largely promoted as one of the few win–win technologies affordable to farmers, in the sense that potentially it improves farmers’ yields (in the long term) at the same time conserving the environment. This is because conservation agriculture reduces nitrogen loss in the soil, promotes water and soil conservation and improves agronomic use efficiency of applied nutrients. However, some concerns have been raised over the feasibility of conservation agriculture on smallholder farms given constraints imposed by the biophysical and institutional realities under which smallholder farmers operate. The main aim of this study is to answer the question whether conservation agriculture is resulting in tangible livelihood outcomes to smallholder farmers. The counterfactual outcome approach was used to estimate ex post impact of conservation agriculture adoption on one of the key livelihood outcomes—food security. RESULTS The study that utilized a data set covering 1623 households in Zimbabwe, Malawi and Mozambique found no significant impact of conservation agriculture adoption on Food Consumption Score of farmers in Zimbabwe and Malawi. Possible reasons for the insignificant of CA impact on food security in Zimbabwe and Malawi could include the small land areas currently devoted to CA, and the failure to implement the full complement of practices necessary to set off the biophysical process that are expected to drive yield increases. In Mozambique, conservation agriculture significantly improved the Food Consumption Score for farmers exposed to the technology. A possible reason for effectiveness of CA in Mozambique could be due to the fact that often CA is being promoted together with other better cropping management practices such as timely weeding and improved seed varieties, which are poorly practiced by the generality of farmers in a country just emerging from a war period. CONCLUSION This paper provides one of the few ex post assessments of the impact of conservation agriculture adoption on household livelihood outcomes—food security. Given the mixed findings, the study suggests that conservation agriculture farmers in the three countries need to be supported to adopt a value chain approach to conservation agriculture. This entails the introduction of commercial or high-value crops in the conservation agriculture programmes, value addition on farmers produce, access to the necessary support services such as markets for seed, fertilizer, herbicides and equipment as well as reliable extension. We believe that under such circumstances conservation agriculture can effectively reduce food insecurity and poverty in the medium to long term

    Modelling the Protective Efficacy of Alternative Delivery Schedules for Intermittent Preventive Treatment of Malaria in Infants and Children

    Get PDF
    BACKGROUND: Intermittent preventive treatment in infants (IPTi) with sulfadoxine-pyrimethamine (SP) is recommended by WHO where malaria incidence in infancy is high and SP resistance is low. The current delivery strategy is via routine Expanded Program on Immunisation contacts during infancy (EPI-IPTi). However, improvements to this approach may be possible where malaria transmission is seasonal, or where the malaria burden lies mainly outside infancy. METHODS AND FINDINGS: A mathematical model was developed to estimate the protective efficacy (PE) of IPT against clinical malaria in children aged 2-24 months, using entomological and epidemiological data from an EPI-IPTi trial in Navrongo, Ghana to parameterise the model. The protection achieved by seasonally-targeted IPT in infants (sIPTi), seasonal IPT in children (sIPTc), and by case-management with long-acting artemisinin combination therapies (LA-ACTs) was predicted for Navrongo and for sites with different transmission intensity and seasonality. In Navrongo, the predicted PE of sIPTi was 26% by 24 months of age, compared to 16% with EPI-IPTi. sIPTc given to all children under 2 years would provide PE of 52% by 24 months of age. Seasonally-targeted IPT retained its advantages in a range of transmission patterns. Under certain circumstances, LA-ACTs for case-management may provide similar protection to EPI-IPTi. However, EPI-IPTi or sIPT combined with LA-ACTs would be substantially more protective than either strategy used alone. CONCLUSION: Delivery of IPT to infants via the EPI is sub-optimal because individuals are not protected by IPT at the time of highest malaria risk, and because older children are not protected. Alternative delivery strategies to the EPI are needed where transmission varies seasonally or the malaria burden extends beyond infancy. Long-acting ACTs may also make important reductions in malaria incidence. However, delivery systems must be developed to ensure that both forms of chemoprevention reach the individuals who are most exposed to malaria

    A single dose of intramuscular sulfadoxine-pyrimethamine as an adjunct to quinine in the treatment of severe malaria: pharmacokinetics and efficacy.

    No full text
    It has been suggested that sulfadoxine-pyrimethamine (SD/PM) may be useful in the treatment of severe malaria since it could enhance the killing of parasites by quinine (QN) and it can be given as a single intramuscular injection. Eighty Kenyan children with severe malaria were allocated at random to receive either intramuscular QN alone (quinine dihydrochloride 20 mg salt/kg as a loading dose, followed by 10 mg salt/kg 12 hourly for a total of 6 doses) or the same QN regimen plus one intramuscular injection of SD/PM (sulfadoxine 25 mg/kg, pyrimethamine 1.25 mg/kg). There was no difference in time to defervescence, aparasitaemia, or 50% reduction in parasitaemia, parasite elimination half-life, or mortality between the 2 groups. In addition, the concentrations of SD and PM were measured in 14 children and of QN in 8 of these children. Concentrations needed to achieve synergy against PM-resistant strains of Plasmodium falciparum were achieved in all of the children with severe malaria within the first hour and maintained for more than 72 h. SD/PM did not perturb the pharmacokinetics of QN

    Halofantrine pharmacokinetics in Kenyan children with non-severe and severe malaria.

    No full text
    1. Kenyan children with uncomplicated malaria given oral halofantrine (HF; non-micronised suspension; 8 mg base kg-1 body weight 6 hourly for three doses) showed wide variation in the disposition of HF and desbutylhalofantrine (HFm). 2. Eight Kenyan children with severe (prostrate) falciparum malaria who were receiving intravenous quinine, were given the same HF regimen by nasogastric tube. One patient had undetectable HF and two had undetectable HFm at all times after drug administration. 3. The mean AUC(0,24 h) of HF in prostrate children was half (7.54 compared with 13.10 micrograms ml-1 h) (P = 0.06), and that for HFm one-third (0.84 compared with 2.51 micrograms ml-1 h) (P < 0.05) of the value in children with uncomplicated malaria. 4. Oral HF may be appropriate for some cases of uncomplicated falciparum malaria in Africa, but in patients with severe malaria, the bioavailability of HF and HFm may be inadequate
    corecore