2,499 research outputs found

    Crustal structure of northwestern Montana

    Get PDF

    Department of the Interior, Bureau of Education

    Get PDF
    Letter concerning the requirements for land grant colleges of agriculture and mechanic arts

    Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud

    Full text link
    Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry and spectroscopy from three ground-based optical datasets we have analyzed the stellar content of OB associations and field areas in and around the regions N 79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF) may depend on different photometric reductions and calibrations. We also correct for the background contribution of field stars, showing the importance of correcting for field star contamination in determinations of the IMF of star formation regions. It is possible that even in the case of an universal IMF, the variability of the density of background stars could be the dominant factor creating the differences between calculated IMFs for OB associations. We have also combined the UIT data with the Magellanic Cloud Photometric Survey to study the distribution of the candidate O-type stars in the field. We find a significant fraction, roughly half, of the candidate O-type stars are found in field regions, far from any obvious OB associations. These stars are greater than 2 arcmin (30 pc) from the boundaries of existing OB associations in the region, which is a distance greater than most O-type stars with typical dispersion velocities will travel in their lifetimes. The origin of these massive field stars (either as runaways, members of low-density star-forming regions, or examples of isolated massive star formation) will have to be determined by further observations and analysis.Comment: 16 pages, 10 figures (19 PostScript files), tabular data + header file for Table 1 (2 ASCII files). File format is LaTeX/AASTeX v.502 using the emulateapj5 preprint style (included). Also available at http://www.boulder.swri.edu/~joel/papers.html . To appear in the February 2001 issue of the Astronomical Journa

    CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments

    Get PDF
    © 2018 Giffard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phyloge-netically coherent “classical ocular lineage”. However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance

    Noncommutative geometry inspired black holes in higher dimensions at the LHC

    Full text link
    When embedding models of noncommutative geometry inspired black holes into the peridium of large extra dimensions, it is natural to relate the noncommutativity scale to the higher-dimensional Planck scale. If the Planck scale is of the order of a TeV, noncommutative geometry inspired black holes could become accessible to experiments. In this paper, we present a detailed phenomenological study of the production and decay of these black holes at the Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively cold and can be well described by the microcanonical ensemble during their entire decay. One of the main consequences of the model is the existence of a black hole remnant. The mass of the black hole remnant increases with decreasing mass scale associated with noncommutative and decreasing number of dimensions. The experimental signatures could be quite different from previous studies of black holes and remnants at the LHC since the mass of the remnant could be well above the Planck scale. Although the black hole remnant can be very heavy, and perhaps even charged, it could result in very little activity in the central detectors of the LHC experiments, when compared to the usual anticipated black hole signatures. If this type of noncommutative inspired black hole can be produced and detected, it would result in an additional mass threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure

    Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain

    Get PDF
    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine
    • …
    corecore