97 research outputs found
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
Structure of the St. Louis encephalitis virus postfusion envelope trimer
St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis
Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand
Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays, but the possible clinical implications of this remain poorly understood. Interactions between these flaviviruses are potentially important for public health because wild-type JEV continues to co-circulate with DENV in Southeast Asia, the area with the highest burden of DENV illness, and JEV vaccination coverage in this region is high. In this study, we examined how preexisting JEV neutralizing antibodies (NAbs) influenced the clinical severity of subsequent DENV infection using data from a prospective school-based cohort study in Thailand that captured a wide range of clinical severities, including asymptomatic, non-hospitalized, and hospitalized DENV infections. We found that the prior existence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic DENV infection. This association was most notable in DENV-naives, in whom the presence of JEV NAbs was also associated with an illness of longer duration. These findings suggest that the issue of heterologous flavivirus immunity and DENV infection merits renewed attention and interest and that DENV vaccine developers might incorporate detailed assessments of preexisting immunity to non-DENV flaviviruses and histories of vaccination against non-DENV flaviviruses in evaluating DENV vaccine safety and efficacy
Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage
Zika virus (ZIKV) is a mosquito-transmitted flavivirus found in both Africa and Asia. Human infection with the virus may result in a febrile illness similar to dengue fever and many other tropical infections found in these regions. Previously, little was known about the genetic relationships between ZIKV strains collected in Africa and those collected in Asia. In addition, the geographic origins of the strains responsible for the recent outbreak of human disease on Yap Island, Federated States of Micronesia, and a human case of ZIKV infection in Cambodia were unknown. Our results indicate that there are two geographically distinct lineages of ZIKV (African and Asian). The virus has circulated in Southeast Asia for at least the past 50 years, whereupon it was introduced to Yap Island resulting in an epidemic of human disease in 2007, and in 2010 was the cause of a pediatric case of ZIKV infection in Cambodia. This study also highlights the danger of ZIKV introduction into new areas and the potential for future epidemics of human disease
Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells
Like other arthropod-borne viruses (arboviruses), mosquito-borne dengue virus (DENV) is maintained in an alternating cycle of replication in arthropod and vertebrate hosts. The trade-off hypothesis suggests that this alternation constrains DENV evolution because a fitness increase in one host usually diminishes fitness in the other. Moreover, the hypothesis predicts that releasing DENV from host alternation should facilitate adaptation. To test this prediction, DENV was serially passaged in either a single human cell line (Huh-7), a single mosquito cell line (C6/36), or in alternating passages between Huh-7 and C6/36 cells. After 10 passages, consensus mutations were identified and fitness was assayed by evaluating replication kinetics in both cell types as well as in a novel cell type (Vero) that was not utilized in any of the passage series. Viruses allowed to specialize in single host cell types exhibited fitness gains in the cell type in which they were passaged, but fitness losses in the bypassed cell type, and most alternating passages, exhibited fitness gains in both cell types. Interestingly, fitness gains were observed in the alternately passaged, cloned viruses, an observation that may be attributed to the acquisition of both host cell–specific and amphi-cell-specific adaptations or to recovery from the fitness losses due to the genetic bottleneck of biological cloning. Amino acid changes common to both passage series suggested convergent evolution to replication in cell culture via positive selection. However, intriguingly, mutations accumulated more rapidly in viruses passed in Huh-7 cells than in those passed in C6/36 cells or in alternation. These results support the hypothesis that releasing DENV from host alternation facilitates adaptation, but there is limited support for the hypothesis that such alternation necessitates a fitness trade-off. Moreover, these findings suggest that patterns of genetic evolution may differ between viruses replicating in mammalian and mosquito cells
Serum Proteome and Cytokine Analysis in a Longitudinal Cohort of Adults with Primary Dengue Infection Reveals Predictive Markers of DHF
10.1371/journal.pntd.0001887PLoS Neglected Tropical Diseases611
Differential replicative ability of clinical dengue virus isolates in an immunocompetent C57BL/6 mouse model
- …
