7 research outputs found

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone morphogenetic protein-6 (BMP-6) is critically involved in many developmental processes. Recent studies indicate that BMP-6 is closely related to tumor differentiation and metastasis.</p> <p>Methods</p> <p>Quantitative RT-PCR was used to determine the expression of BMP-6, E-cadherin, and δEF1 at the mRNA level in MCF-7 and MDA-MB-231 breast cancer cells, as well as in 16 breast cancer specimens. Immunoblot analysis was used to measure the expression of δEF1 at the protein level in δEF1-overexpressing and δEF1-interfered MDA-MB-231 cells. Luciferase assay was used to determine the rhBMP-6 or δEF1 driven transcriptional activity of the E-cadherin promoter in MDA-MB-231 cells. Quantitative CHIP assay was used to detect the direct association of δEF1 with the E-cadherin proximal promoter in MDA-MB-231 cells.</p> <p>Results</p> <p>MCF-7 breast cancer cells, an ER<sup>+ </sup>cell line that expressed high levels of BMP-6 and E-cadherin exhibited very low levels of δEF1 transcript. In contrast, MDA-MB-231 cells, an ER<sup>- </sup>cell line had significantly reduced BMP-6 and E-cadherin mRNA levels, suggesting an inverse correlation between BMP-6/E-cadherin and δEF1. To determine if the same relationship exists in human tumors, we examined tissue samples of breast cancer from human subjects. In 16 breast cancer specimens, the inverse correlation between BMP-6/E-cadherin and δEF1 was observed in both ER<sup>+ </sup>cases (4 of 8 cases) and ER<sup>- </sup>cases (7 of 8 cases). Further, we found that BMP-6 inhibited δEF1 transcription, resulting in an up-regulation of E-cadherin mRNA expression. This is consistent with our analysis of the E-cadherin promoter demonstrating that BMP-6 was a potent transcriptional activator. Interestingly, ectopic expression of δEF1 was able to block BMP-6-induced transactivation of E-cadherin, whereas RNA interference-mediated down-regulation of endogenous δEF1 in breast cancer cells abolished E-cadherin transactivation by BMP-6. In addition to down-regulating the expression of δEF1, BMP-6 also physically dislodged δEF1 from E-cadherin promoter to allow the activation of E-cadherin transcription.</p> <p>Conclusion</p> <p>We conclude that repression of δEF1 plays a key role in mediating BMP-6-induced transcriptional activation of E-cadherin in breast cancer cells. Consistent with the fact that higher level of δEF1 expression is associated with more invasive phenotype of breast cancer cells, our collective data suggests that δEF1 is likely the switch through which BMP-6 restores E-cadherin-mediated cell-to-cell adhesion and prevents breast cancer metastasis.</p

    Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener

    No full text
    Soil biota community structure can change with latitude, but the effects of changes on native plants, invasive plants, and their herbivores remain unclear. Here, we examined latitudinal variation in the soil biota community associated with the invasive plant Alternanthera philoxeroides and its native congener A. sessilis, and the effects of soil biota community variation on these plants and the beetle Agasicles hygrophila. We characterized the soil bacterial and fungal communities and root-knot nematodes of plant rhizospheres collected from 22 degrees N to 36.6 degrees N in China. Soil biota community structure changed with latitude as a function of climate and soil properties. Root-knot nematode abundance and potential soil fungal pathogen diversity (classified with FUNGuild) decreased with latitude, apparently due to higher soil pH and lower temperatures. A greenhouse experiment and lab bioassay showed native plant mass, seed production, and mass of beetles fed native foliage increased with soil collection latitude. However, there were no latitudinal patterns for the invasive plant. These results suggest that invasive and native plants and, consequently, their herbivores have different responses to latitudinal changes in soil-borne enemies, potentially creating spatial variation in enemy release or biotic resistance. This highlights the importance of linking above- and below-ground multitrophic interactions to explore the role of soil biota in non-native plant invasions with a biogeographic approach

    Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer

    No full text
    corecore