7 research outputs found

    Mining protein loops using a structural alphabet and statistical exceptionality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.</p> <p>Results</p> <p>We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints.</p> <p>Conclusions</p> <p>We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at <url>http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/</url>.</p

    <it>TP53 </it>mutations, human papilloma virus DNA and inflammation markers in esophageal squamous cell carcinoma from the Rift Valley, a high-incidence area in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Squamous Cell Carcinoma of Esophagus is one of the most common malignancies in both men and women in eastern and south-eastern Africa. In Kenya, clinical observations suggest that this cancer is frequent in the Rift Valley area. However, so far, there has been no report on the molecular characteristics of esophageal squamous cell carcinoma (ESCC) in this area.</p> <p>Results</p> <p>We have analyzed <it>TP53 </it>mutations, the presence of human papilloma virus (HPV) DNA and expression of inflammation markers Cyclooxygenase 2 (Cox-2) and Nitrotyrosine (NTyR) in 28 cases (13 males and 15 females) of archived ESCC tissues collected at the Moi Teaching and Referral Hospital in Eldoret, Kenya. Eleven mutations were detected in <it>TP53 </it>exons 5 to 8 (39%). All ESCC samples were negative for HPV 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 82. Immunohistochemical analysis of Cox-2 and NTyR showed a low proportion of positive cases (17.4% and 39.1%, respectively). No association between the above markers and suspected risk factors (alcohol or tobacco use, hot tea drinking, use of charcoal for cooking) was found.</p> <p>Conclusion</p> <p>Our findings suggest that mechanisms of esophageal carcinogenesis in eastern Africa might be different from other parts of the world. Low prevalence of <it>TP53 </it>mutation compared with other intermediate or high incidence areas of the world highlights this hypothesis. Our data did not support a possible ole of HPV in this series of cases. Further studies are needed to assess and compare the molecular patterns of ESCC from Kenya with those of high-incidence areas such as China or Central Asia.</p

    Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage

    No full text
    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota
    corecore