190 research outputs found

    TGF-β1-induced differentiation of SHED into functional smooth muscle cells

    Get PDF
    published_or_final_versio

    Optimization and clinical validation of a pathogen detection microarray

    Get PDF
    New design and optimization of pathogen detection microarrays is shown to allow robust and accurate detection of a range of pathogens. The customized microarray platform includes a method for reducing PCR bias during DNA amplification

    In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient.</p> <p>Methods</p> <p>Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions.</p> <p>Results</p> <p>Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient.</p> <p>Conclusion</p> <p>Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.</p

    Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    Get PDF
    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures

    Get Phases from Arsenic Anomalous Scattering: de novo SAD Phasing of Two Protein Structures Crystallized in Cacodylate Buffer

    Get PDF
    The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography

    Nε−Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity

    Get PDF
    Evidence suggesting that eukaryotes and archaea use reversible Nε-lysine (Nε-Lys) acetylation to modulate gene expression has been reported, but evidence for bacterial use of Nε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs). We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat). Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD+-dependent Sir2 (sirtuin)-like protein deacetylase (CobB) deacetylated acetylated RcsB (RcsBAc), demonstrating that Nε-Lys acetylation of RcsB is reversible. Analysis of RcsBAc and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible Nε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells

    A cutting force model based on kinematics analysis for C/SiC in rotary ultrasonic face machining

    Get PDF
    Ceramic matrix composites (CMC) superior properties and are used in the harsh conditions of high temperature and pressure, in aerospace and other industries. However, due to inhomogeneous and anisotropic properties of the composites, the machining is still challenging to achieve desired efficiency and quality. For advanced materials, Rotary ultrasonic machining is considered as a process with high efficiency technology. The cutting force is a critical factor required to be effectively predicted and controlled to reduce processing defects in composites. In this research, the rotary ultrasonic machining was used for face machining of carbon reinforced silicon carbide matrix composites (C/SiC), with a conical shaped tool. The kinematics between individual diamond abrasive and the workpiece material was analyzed to illustrate the separation characteristics in the cutting area. The condition for the intermittent machining during RUFM was obtained by establishing the mathematical relation between cutting parameters and vibration parameters. The indentation fracture theory was adopted to calculate the penetration depth into the workpiece by diamond abrasives in the RUFM. The relationship of cutting force and processing parameters including spindle speed, feed rate, and cutting depth were investigated. The comparison of the experimental and simulation data of the cutting force, showed that most of the tests, the errors were below 15 %. It is therefore stipulated that the cutting force model developed in this paper can be applied to predict cutting forces and optimize the process in the RUFM of C/SiC
    corecore