150 research outputs found

    Accurate Strand-Specific Quantification of Viral RNA

    Get PDF
    The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR) step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o'nyong-nyong (ONNV) that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (−) strand RNA with this assay when higher levels of cDNA generated from the (+) strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (−) strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR® Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV), the recent cause of large outbreaks of disease in the Indian Ocean region

    A Genome-Wide Screen for Regulators of TORC1 in Response to Amino Acid Starvation Reveals a Conserved Npr2/3 Complex

    Get PDF
    TORC1 is a central regulator of cell growth in response to amino acid availability, yet little is known about how it is regulated. Here, we performed a reverse genetic screen in yeast for genes necessary to inactivate TORC1. The screen consisted of monitoring the expression of a TORC1 sensitive GFP-based transcriptional reporter in all yeast deletion strains using flow cytometry. We find that in response to amino acid starvation, but not to carbon starvation or rapamycin treatment, cells lacking NPR2 and NPR3 fail to fully (1) activate transcription factors Gln3/Gat1, (2) dephosphorylate TORC1 effector Npr1, and (3) repress ribosomal protein gene expression. Both mutants show proliferation defects only in media containing a low quality nitrogen source, such as proline or ammonia, whereas no defects are evident when cells are grown in the presence of glutamine or peptone mixture. Proliferation defects in npr2Δ and npr3Δ cells can be completely rescued by artificially inhibiting TORC1 by rapamycin, demonstrating that overactive TORC1 in both strains prevents their ability to adapt to an environment containing a low quality nitrogen source. A biochemical purification of each demonstrates that Npr2 and Npr3 form a heterodimer, and this interaction is evolutionarily conserved since the human homologs of NPR2 and NPR3 (NPRL2 and NPRL3, respectively) also co-immunoprecipitate. We conclude that, in yeast, the Npr2/3 complex mediates an amino acid starvation signal to TORC1

    Gene Expression Patterns of Dengue Virus-Infected Children from Nicaragua Reveal a Distinct Signature of Increased Metabolism

    Get PDF
    Dengue is a widespread viral disease for which over 3 billion people are at risk. There are no drug treatments or vaccines available for this disease. It is also difficult for physicians to predict which patients are at highest risk for the severe manifestations known as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We used genome-wide transcriptional profiling analysis to study peripheral blood responses to dengue among patients from Nicaragua. We found that patients with severe manifestations involving shock had very different transcriptional profiles from dengue patients with mild and moderate illness. We then compared our results with other microarray experiments on dengue patients available from public databases and confirmed that dengue is often associated with large changes to the metabolic processes within cells. This approach could identify prognostic markers for severe dengue as well as provide a better understanding of the pathophysiology associated with different grades of disease severity

    Peer mentorship to promote effective pain management in adolescents: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This protocol is for a study of a new program to improve outcomes in children suffering from chronic pain disorders, such as fibromyalgia, recurrent headache, or recurrent abdominal pain. Although teaching active pain self-management skills through cognitive-behavioral therapy (CBT) or a complementary program such as hypnotherapy or yoga has been shown to improve pain and functioning, children with low expectations of skill-building programs may lack motivation to comply with therapists' recommendations. This study will develop and test a new manualized peer-mentorship program which will provide modeling and reinforcement by peers to other adolescents with chronic pain (the mentored participants). The mentorship program will encourage mentored participants to engage in therapies that promote the learning of pain self-management skills and to support the mentored participants' practice of these skills. The study will examine the feasibility of this intervention for both mentors and mentored participants, and will assess the preliminary effectiveness of this program on mentored participants' pain and functional disability.</p> <p>Methods</p> <p>This protocol will recruit adolescents ages 12-17 with chronic pain and randomly assign them to either peer mentorship or a treatment-as-usual control group. Mentored participants will be matched with peer mentors of similar age (ages 14-18) who have actively participated in various treatment modalities through the UCLA Pediatric Pain Program and have learned to function successfully with a chronic pain disorder. The mentors will present information to mentored participants in a supervised and monitored telephone interaction for 2 months to encourage participation in skill-building programs. The control group will receive usual care but without the mentorship intervention. Mentored and control subjects' pain and functioning will be assessed at 2 months (end of intervention for mentored participants) and at 4 month follow-up to see if improvements persist. Measures of treatment adherence, pain, disability, and anxiety and depression will be assessed throughout study participation. Qualitative interviews for mentors, mentored participants, and control subjects will also be administered.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01118988">NCT01118988</a>.</p

    A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast

    Get PDF
    In mammals, NO•, a signaling molecule is implicated in the regulation of vasodilation, neurotransmission and immune response. It is believed that NO• is a signaling molecule also in unicellular organism like yeast and may be involved in the regulation of apoptosis and sporulation. It has been reported that NO• is produced during chronological aging (CA) leading to an increase of the superoxide level, which in turn mediates apoptosis. Since this conclusion was based on indirect measurements of NO• by the Griess reaction, the role of NO• signaling during CA in the yeast remains uncertain. We investigated this issue more precisely using different genetic and biochemical methodologies. We used cells lacking the factors influencing nitrosative stress response like flavohemoglobin metabolizing NO•, S-nitrosoglutathione reductase metabolizing S-nitrosoglutathione and the transcription factor Fzf1p mediating NO• response. We measured the standard parameters describing CA and found an elevation in the superoxide level, percentage of death cells, the level of TUNEL positive cells and a decrease in proliferating potential. These observations showed no significant differences between wild type cells and the disruptants except for a small elevation of the superoxide level in the Δsfa1 mutant. The intracellular NO• level and flavohemoglobin expression decreased rather than increased during CA. Products of general nitrogen metabolism and protein tyrosine nitration were slightly decreased during CA, the magnitude of changes showing no differences between the wild type and the mutant yeast. Altogether, our data indicate that apoptosis during yeast CA is mediated by superoxide signaling rather than NO• signaling

    Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, arthropod-borne virus infections are increasingly common causes of severe febrile disease that can progress to long-term physical or cognitive impairment or result in early death. Because of the large populations at risk, it has been suggested that these outcomes represent a substantial health deficit not captured by current global disease burden assessments.</p> <p>Methods</p> <p>We reviewed newly available data on disease incidence and outcomes to critically evaluate the disease burden (as measured by disability-adjusted life years, or DALYs) caused by yellow fever virus (YFV), Japanese encephalitis virus (JEV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). We searched available literature and official reports on these viruses combined with the terms "outbreak(s)," "complication(s)," "disability," "quality of life," "DALY," and "QALY," focusing on reports since 2000. We screened 210 published studies, with 38 selected for inclusion. Data on average incidence, duration, age at onset, mortality, and severity of acute and chronic outcomes were used to create DALY estimates for 2005, using the approach of the current Global Burden of Disease framework.</p> <p>Results</p> <p>Given the limitations of available data, nondiscounted, unweighted DALYs attributable to YFV, JEV, CHIKV, and RVFV were estimated to fall between 300,000 and 5,000,000 for 2005. YFV was the most prevalent infection of the four viruses evaluated, although a higher proportion of the world's population lives in countries at risk for CHIKV and JEV. Early mortality and long-term, related chronic conditions provided the largest DALY components for each disease. The better known, short-term viral febrile syndromes caused by these viruses contributed relatively lower proportions of the overall DALY scores.</p> <p>Conclusions</p> <p>Limitations in health systems in endemic areas undoubtedly lead to underestimation of arbovirus incidence and related complications. However, improving diagnostics and better understanding of the late secondary results of infection now give a first approximation of the current disease burden from these widespread serious infections. Arbovirus control and prevention remains a high priority, both because of the current disease burden and the significant threat of the re-emergence of these viruses among much larger groups of susceptible populations.</p
    corecore