48 research outputs found

    Development and validation of a low dose simulator for computed tomography

    Get PDF
    To develop and validate software for facilitating observer studies on the effect of radiation exposure on the diagnostic value of computed tomography (CT). A low dose simulator was developed which adds noise to the raw CT data. For validation two phantoms were used: a cylindrical test object and an anthropomorphic phantom. Images of both were acquired at different dose levels by changing the tube current of the acquisition (500 mA to 20 mA in five steps). Additionally, low dose simulations were performed from 500 mA downwards to 20 mA in the same steps. Noise was measured within the cylindrical test object and in the anthropomorphic phantom. Finally, noise power spectra (NPS) were measured in water. The low dose simulator yielded similar image quality compared with actual low dose acquisitions. Mean difference in noise over all comparisons between actual and simulated images was 5.7 +/- 4.6% for the cylindrical test object and 3.3 +/- 2.6% for the anthropomorphic phantom. NPS measurements showed that the general shape and intensity are similar. The developed low dose simulator creates images that accurately represent the image quality of acquisitions at lower dose levels and is suitable for application in clinical studies.Radiolog

    Ethnobotany genomics - discovery and innovation in a new era of exploratory research

    Get PDF
    We present here the first use of DNA barcoding in a new approach to ethnobotany we coined "ethnobotany genomics". This new approach is founded on the concept of 'assemblage' of biodiversity knowledge, which includes a coming together of different ways of knowing and valorizing species variation in a novel approach seeking to add value to both traditional knowledge (TK) and scientific knowledge (SK). We employed contemporary genomic technology, DNA barcoding, as an important tool for identifying cryptic species, which were already recognized ethnotaxa using the TK classification systems of local cultures in the Velliangiri Hills of India. This research is based on several case studies in our lab, which define an approach to that is poised to evolve quickly with the advent of new ideas and technology. Our results show that DNA barcoding validated several new cryptic plant species to science that were previously recognized by TK classifications of the Irulas and Malasars, and were lumped using SK classification. The contribution of the local aboriginal knowledge concerning plant diversity and utility in India is considerable; our study presents new ethnomedicine to science. Ethnobotany genomics can also be used to determine the distribution of rare species and their ecological requirements, including traditional ecological knowledge so that conservation strategies can be implemented. This is aligned with the Convention on Biological Diversity that was signed by over 150 nations, and thus the world's complex array of human-natural-technological relationships has effectively been re-organized

    A Technique for Simulating the Effect of Dose Reduction on Image Quality in Digital Chest Radiography

    No full text
    Purpose: The purpose of this study is to provide a pragmatic tool for studying the relationship between dose and image quality in clinical chest images. To achieve this, we developed a technique for simulating the effect of dose reduction on image quality of digital chest images. Materials and Methods: The technique was developed for a digital charge-coupled-device (CCD) chest unit with slot-scan acquisition. Raw pixel values were scaled to a lower dose level, and a random number representing noise to each specific pixel value was added. After adding noise, raw images were post processed in the standard way. Validation was performed by comparing pixel standard deviation, as a measure of noise, in simulated images with images acquired at actual lower doses. To achieve this, a uniform test object and an anthropomorphic phantom were used. Additionally, noise power spectra of simulated and actual images were compared. Also, detectability of simulated lesions was investigated using a model observer. Results: The mean difference in noise values between simulated and real lower-dose phantom images was smaller than 5% for relevant clinical settings. Noise power spectra appeared to be comparable on average but simulated images showed slightly higher noise levels for higher spatial frequencies and slightly lower noise levels for lower spatial frequencies. Comparable detection performance was shown in simulated and actual images with slightly worse detectability for simulated lower dose images. Conclusion: We have developed and validated a method for simulating dose reduction. Our method seems an acceptable pragmatic tool for studying the relationship between dose and image quality
    corecore