61 research outputs found

    Field Theory for a Deuteron Quantum Liquid

    Full text link
    Based on general symmetry principles we study an effective Lagrangian for a neutral system of condensed spin-1 deuteron nuclei and electrons, at greater-than-atomic but less-than-nuclear densities. We expect such matter to be present in thin layers within certain low-mass brown dwarfs. It may also be produced in future shock-wave-compression experiments as an effective fuel for laser induced nuclear fusion. We find a background solution of the effective theory describing a net spin zero condensate of deuterons with their spins aligned and anti-aligned in a certain spontaneously emerged preferred direction. The spectrum of low energy collective excitations contains two spin waves with linear dispersions -- like in antiferromagnets -- as well as gapped longitudinal and transverse modes related to the Meissner effect -- like in superconductors. We show that counting of the Nambu-Goldstone modes of spontaneously broken internal and space-time symmetries obeys, in a nontrivial way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We discuss thermodynamic properties of the condensate, and its potential manifestation in the low-mass brown dwarfs.Comment: 19 LaTeX pages; v2: 2 refs added, JHEP versio

    Community Justice and Public Safety: Assessing Criminal Justice Policy Through the Lens of the Social Contract

    Get PDF
    A reconceptualization of the idea of “community justice” is framed in the logic of the social contract and emphasizes the responsibility of the justice system for the provision of public safety. First, we illustrate the ways in which the criminal justice system has hindered the efforts of community residents to participate in the production of public safety by disrupting informal social networks. Then we turn to an examination of the compositional dynamics of California prison populations over time to demonstrate that the American justice system has failed to meet their obligations to provide public safety by incapacitating dangerous offenders. We argue that these policy failures represent a breach of the social contract and advocate for more effective collaboration between communities and the formal criminal justice system so that all parties can fulfill their obligations under the contract

    Quantum simulation of low-temperature metallic liquid hydrogen

    Get PDF
    The melting temperature of solid hydrogen drops with pressure above ~65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low-temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here we report results for hydrogen at high pressures using ab initio methods, which include a description of the quantum motion of the protons. We determine the melting temperature as a function of pressure and find an atomic solid phase from 500 to 800 GPa, which melts at <200 K. Beyond this and up to 1,200 GPa, a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature reported, as simulations with classical nuclei lead to considerably higher melting temperatures of ~300 K across the entire pressure range considered

    The transition to the metallic state in alkali and low-Z fluids

    No full text
    We review here experiments that investigate how the electronic properties of five chemically dissimilar fluid elements, hydrogen, nitrogen, oxygen, rubidium and caesium, vary with density beyond their critical points. Remarkably, all five elements in their metallic regime have essentially the same electrical conductivities, close to the predicted minimum metallic conductivity of a high-temperature, disordered metallic fluid. The large differences in their respective metal-nonmetal transition densities are rationalized in terms of each chemical element's unique atomic properties of size (radial extent of electronic wave function, N. F. Mott [1]) and electronic polarizability (K. F. Herzfeld and D. A. Goldhammer [2]). These experiments thereby highlight the pivotal role of atomic properties in dictating the metallic or nonmetallic status of chemical elements of the periodic classification

    Magnetic field-induced metal-insulator transitions in graphite and diluted magnetic semiconductors - Discussion

    No full text
    Two topical subjects related with the effect of magnetic field on electrical conduction and the metal-insulator transition are discussed. The first topic is an electronic phase transition in graphite, which is interpreted as a manifestation of a nestingtype instability inherent to a one-dimensional narrow Landau sub-band. The second topic is spin-dependent tranport in III-V based diluted magnetic semiconductors; in particular, a large negative magnetoresistance observed in the vicinity of metal-nonmetal transition
    corecore