223 research outputs found

    Toxicity screening of biodegradable polymers. II. Evaluation of cell culture test with medium extract

    Get PDF
    Cell culture testing with material extracts was applied to toxicity screening of some commercial degradable plastics: a plasticized cellulose acetate, an aliphatic polyester (Bionolle), polyhydroxybutyrate-co-hydroxyvalerate (Biopol), and polycaprolactone (TONE polymer). Cell culture medium with serum was used as extraction medium. Methods for the determination of morphology and viability of cells cultured in the extract were investigated. Phase-contrast light microscopy of cells, enhanced by neutral red staining, provides high-contrast images for qualitative evaluation of cell morphology and lysis. Compared to the determination of protein using the Bradford method and of neutral red uptake, the determination of dehydrogenase activity using 3-[4,5-dimethylthia-zol-2-yl]-2,5-diephenyl-tetrazolium bromide (MTT) is more sensitive and accurate. The relative MTT activity of cells cultured in fresh extracts indicate that TONE polymer (all shapes) and Bionolle (test bars and films) are comparable to materials currently used in the food industry (polyethylene terephthalate, atactic and isotactic polystyrene) with no toxic effects on cell

    Processing and characterization of a new biodegradable composite made of a PHB/V matrix and regenerated cellulosic fibers

    Get PDF
    In this study, a biodegradable composite consisting of a degradable continuous cellulosic fiber and a degradable polymer matrix—poly(3-hydroxybutyrate)-co-poly(3-hydroxyvalerate (PHB/V with 19% HV)—was developed. The composite was processed by impregnating the cellulosic fibers on-line withPHB/V powder in a fluidization chamber. The impregnated roving was then filament wound on a plate and hot-pressed. The resulting unidirectional composite plates were mechanically tested and optically characterized by SEM. The fiber content was 9.9 ±0.9 vol% by volumetric determination. The fiber content predicted by the rule of mixture for unidirectional composites was 13.8 ±1.4 vol%. Optical characterization showed that the fiber distribution was homogeneous and a satisfactory wetting of the fibers by the matrix was achieved. Using a blower to remove excess matrix powder during processing increased the fiber content to 26.5 ±3.3 vol % (volumetric) or 30.0 ±0.4 vol% (rule of mixture). The tensile strength of the composite parallel to the fiber direction was 128 ±12 MPa (10 vol% fiber) up to 278 ±48 MPa (26.5 vol% fiber), compared to 20 MPa for the PHB/V matrix. The Young's modulus was 5.8 ±0.5 GPa (10 vol% fiber) and reached 11.4 ±0.14 GPa (26.5 vol% fiber), versus 1 GPa for the matri

    Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone)

    Get PDF
    In the present study, topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite (HA) coatings on carbon fibre-reinforced polyetheretherketone (CF/PEEK) was performed. VPS-Ti coatings with high roughness values (Ra=28.29±3.07 μm, Rz=145.35±9.88 μm) were obtained. On this titanium, intermediate layer HA coatings of various thicknesses were produced. With increasing coating thickness, roughness values of the HA coatings decreased. A high increase of profile length ratio, Lr, of the VPS-Ti coatings (Lr=1.45) compared to the grit-blasted CF/PEEK substrate (Lr=1.08) was observed. Increasing the HA coating thickness resulted in a reduction of the Lr values similar to the roughness values. Fractal analysis of the obtained roughness profiles revealed that the VPS-Ti coatings showed the highest fractal dimension of D=1.34±0.02. Fractal dimension dropped to a value of 1.23-1.25 for all HA coatings. No physical deterioration of the CF/PEEK substrate was observed, indicating that substrate drying and the used VPS process parameter led to the desired coatings on the composite material. Cross-section analysis revealed a good interlocking between the titanium intermediate layer and the PEEK substrate. It is therefore assumed that this interlocking results in suitable mechanical adhesive strength. From the results obtained in this study it is concluded that VPS is a suitable method for manufacturing HA coatings on carbon fibre-reinforced PEEK implant material
    corecore