17,777 research outputs found

    Theoretically palatable flavor combinations of astrophysical neutrinos

    Full text link
    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.Comment: 13 pages, 12 figures. Matches published versio

    Leon muss planen

    Full text link

    Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    Get PDF
    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10310^3 in luminosity (LIR≈LBAT1.25L_{IR} \approx L_{BAT}^{1.25})and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.Comment: accepted to ApJ

    Event generation with SHERPA 1.1

    Full text link
    In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.Comment: 47 pages, 21 figure

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v

    Stable retrograde orbits around the triple system 2001 SN263

    Full text link
    The NEA 2001 SN263 is the target of the ASTER MISSION - First Brazilian Deep Space Mission. Araujo et al. (2012), characterized the stable regions around the components of the triple system for the planar and prograde cases. Knowing that the retrograde orbits are expected to be more stable, here we present a complementary study. We now considered particles orbiting the components of the system, in the internal and external regions, with relative inclinations between 90∘<I⩽180∘90^{\circ}< I \leqslant180^{\circ}, i.e., particles with retrograde orbits. Our goal is to characterize the stable regions of the system for retrograde orbits, and then detach a preferred region to place the space probe. For a space mission, the most interesting regions would be those that are unstable for the prograde cases, but stable for the retrograde cases. Such configuration provide a stable region to place the mission probe with a relative retrograde orbit, and, at the same time, guarantees a region free of debris since they are expected to have prograde orbits. We found that in fact the internal and external stable regions significantly increase when compared to the prograde case. For particles with e=0e=0 and I=180∘I=180^{\circ}, we found that nearly the whole region around Alpha and Beta remain stable. We then identified three internal regions and one external region that are very interesting to place the space probe. We present the stable regions found for the retrograde case and a discussion on those preferred regions. We also discuss the effects of resonances of the particles with Beta and Gamma, and the role of the Kozai mechanism in this scenario. These results help us understand and characterize the stability of the triple system 2001 SN263 when retrograde orbits are considered, and provide important parameters to the design of the ASTER mission.Comment: 11 pages, 8 figures. Accepted for publication in MNRAS - 2015 March 1
    • …
    corecore