1,074 research outputs found

    Studies of oxidative stress in cellular systems The interaction of monocytes and erythrocytes

    Get PDF
    Abstract1H spin echo NMR spectroscopy is used to follow the interaction of intact and viable erythrocytes and monocytes obtained from different sources in mixed cultures. After a lag time (270 min) erythrocyte glutathione is observed to become more oxidised. This result is believed to occur as a consequence of monocyte activation generating hydrogen peroxide or hypochlorous acid, which is targeted at the erythrocyte. The red cell in turn employs its sulphydryl system as an anti-oxidant defence

    Continuum theory of vacancy-mediated diffusion

    Full text link
    We present and solve a continuum theory of vacancy-mediated diffusion (as evidenced, for example, in the vacancy driven motion of tracers in crystals). Results are obtained for all spatial dimensions, and reveal the strongly non-gaussian nature of the tracer fluctuations. In integer dimensions, our results are in complete agreement with those from previous exact lattice calculations. We also extend our model to describe the vacancy-driven fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review

    Dynamics of 2D pancake vortices in layered superconductors

    Full text link
    The dynamics of 2D pancake vortices in Josephson-coupled superconducting/normal - metal multilayers is considered within the time-dependent Ginzburg-Landau theory. For temperatures close to TcT_{c} a viscous drag force acting on a moving 2D vortex is shown to depend strongly on the conductivity of normal metal layers. For a tilted vortex line consisting of 2D vortices the equation of viscous motion in the presence of a transport current parallel to the layers is obtained. The specific structure of the vortex line core leads to a new dynamic behavior and to substantial deviations from the Bardeen-Stephen theory. The viscosity coefficient is found to depend essentially on the angle γ\gamma between the magnetic field B{\bf B} and the c{\bf c} axis normal to the layers. For field orientations close to the layers the nonlinear effects in the vortex motion appear even for slowly moving vortex lines (when the in-plane transport current is much smaller than the Ginzburg-Landau critical current). In this nonlinear regime the viscosity coefficient depends logarithmically on the vortex velocity VV.Comment: 15 pages, revtex, no figure

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.

    High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network:A Joint Approach Using Neutron Diffraction and Molecular Dynamics

    Get PDF
    International audienceA combination of in situ high-pressure neutron diffraction at pressures up to 17.5(5) GPa and moleculardynamics simulations employing a many-body interatomic potential model is used to investigate thestructure of cold-compressed silica glass. The simulations give a good account of the neutron diffractionresults and of existing x-ray diffraction results at pressures up to ∼60 GPa. On the basis of the moleculardynamics results, an atomistic model for densification is proposed in which rings are “zipped” by a pairingof five- and/or sixfold coordinated Si sites. The model gives an accurate description for the dependence ofthe mean primitive ring size hni on the mean Si-O coordination number, thereby linking a parameter that issensitive to ordering on multiple length scales to a readily measurable parameter that describes the localcoordination environment

    Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory

    Full text link
    We study quartic matrix models with partition function Z[E,J]=\int dM \exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing \beta-function. As main application we prove that Euclidean \phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->\infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->\infty and after renormalisation of E,\lambda) the free energy density (1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae and vanishing of \beta-function hold for general quartic matrix models. v3: We add the existence proof for a solution of the non-linear integral equation. A rescaling of matrix indices was necessary. v2: We provide Schwinger-Dyson equations for all correlation functions and prove an algebraic recursion formula for their solutio

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F1/g(m)F \sim 1/g(m) for mΛm \gg \Lambda while F(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with δ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.

    A spatially-VSL gravity model with 1-PN limit of GRT

    Full text link
    A scalar gravity model is developed according the 'geometric conventionalist' approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach 1957, Gruenbaum1973). In principle this approach allows an alternative interpretation and formulation of General Relativity Theory (GRT), with distinct i) physical congruence standard, and ii) gravitation dynamics according Hamilton-Lagrange mechanics, while iii) retaining empirical indistinguishability with GRT. In this scalar model the congruence standards have been expressed as gravitationally modified Lorentz Transformations (Broekaert 2002). The first type of these transformations relate quantities observed by gravitationally 'affected' (natural geometry) and 'unaffected' (coordinate geometry) observers and explicitly reveal a spatially variable speed of light (VSL). The second type shunts the unaffected perspective and relates affected observers, recovering i) the invariance of the locally observed velocity of light, and ii) the local Minkowski metric (Broekaert 2003). In the case of a static gravitation field the model retrieves the phenomenology implied by the Schwarzschild metric. The case with proper source kinematics is now described by introduction of a 'sweep velocity' field w: The model then provides a hamiltonian description for particles and photons in full accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972, Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved, section on acceleration transformation added, text improved, more references, same results, v3: typos removed, footnotes, added and references updated, v4: appendix added, improved tex

    Application of phage display to high throughput antibody generation and characterization.

    Get PDF
    We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online. Sensitive detection was demonstrated in a bead based flow cytometry assay. Furthermore, positive staining by immunohistochemistry on tissue microarrays was found for 37% (143/381) of antibodies. Thus, we have demonstrated the potential of and illuminated the issues associated with genome-wide monoclonal antibody generation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore