2,281 research outputs found

    The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    Full text link
    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO Δ\Deltav=1 lines near 4.6 μ\mum and HCN lines near 3 μ\mum in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture

    Photogrammetric survey of dinosaur skeletons

    Get PDF

    Reciprocal space mapping of magnetic order in thick epitaxial MnSi films

    Full text link
    We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of direct reciprocal space mapping, GISANS and OSR reveal a magnetic modulation perpendicular to the films under magnetic fields parallel and perpendicular to the film, where additional polarized neutron reflectometry (PNR) and magnetization measurements are in excellent agreement with the literature. Regardless of field orientation, our data does not suggest the presence of more complex spin textures, notably the formation of skyrmions. This observation establishes a distinct difference with bulk samples of MnSi of similar thickness under perpendicular field, in which a skyrmion lattice dominates the phase diagram. Extended x-ray absorption fine structure measurements suggest that small shifts of the Si positions within the unstrained unit cell control the magnetic state, representing the main difference between the films and thin bulk samples

    Flow effects on the freeze-out phase-space density in heavy ion collisions

    Get PDF
    The strong longitudinal expansion of the reaction zone formed in relativistic heavy-ion collisions is found to significantly reduce the spatially averaged pion phase-space density, compared to naive estimates based on thermal distributions. This has important implications for data interpretation and leads to larger values for the extracted pion chemical potential at kinetic freeze-out.Comment: 5 pages, 3 figures included via epsfig, added discussion of different transverse density profiles, 1 new figur

    Violation of Wiedemann-Franz law at the Kondo breakdown quantum critical point

    Full text link
    We study both the electrical and thermal transport near the heavy-fermion quantum critical point (QCP), identified with the breakdown of the Kondo effect as an orbital selective Mott transition. We show that the contribution to the electrical conductivity comes mainly from conduction electrons while the thermal conductivity is given by both conduction electrons and localized fermions (spinons), scattered with dynamical exponent z=3z = 3. This scattering mechanism gives rise to a quasi-linear temperature dependence of the electrical and thermal resistivity. The characteristic feature of the Kondo breakdown scenario turns out to be emergence of additional entropy carriers, that is, spinon excitations. As a result, we find that the Wiedemann-Franz ratio should be larger than the standard value, a fact which enables to differentiate the Kondo breakdown scenario from the Hertz-Moriya-Millis framework

    Substituted bisphosphanylamines as ligands in gold(I) chemistry – synthesis and structures

    Get PDF
    Dimethyl 5-aminoisophthalate, which is a building block of amino-substituted tetralactam macrocycles, was used as ligand in gold(I) chemistry to form model complexes for macrocyclic gold compounds. Reaction of dimethyl 5-aminoisophthalate with chlorodiphenylphosphine gave the diphosphine compound dimethyl 5-[N,N-bis(diphenylphosphanyl)amino]isophthalate (dmbpaip). This compound can further be reacted with [AuCl(tht)] (tht = tetrahydrothiophene) to give the dinuclear complex [Au(2),Cl(2)(dmbpaip)]. In contrast, treatment of dinbpaip with [Au(tht)(2)]ClO(4) resulted in the ionic compound [Au(2)(dmbpaip)(2)](ClO(4))(2) in which the cation forms an eight-membered Au(2)P(4)N(2) heterocycle. In both gold(I) compounds Au center dot center dot center dot Au interactions are observed. All new compounds were characterized by single-crystal X-ray diffraction

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200

    Two-particle interferometry for non-central heavy-ion collisions

    Get PDF
    In non-central heavy ion collisions, identical two particle Hanbury-Brown/Twiss (HBT) correlations C(K,q) depend on the azimuthal direction of the pair momentum K. We investigate the consequences for a harmonic analysis of the corresponding HBT radius parameters. Our discussion includes both, a model- independent analysis of these parameters in the Gaussian approximation, and the study of a class of hydrodynamical models which mimic essential geometrical and dynamical properties of peripheral heavy ion collisions. Also, we discuss the additional geometrical and dynamical information contained in the harmonic coefficients of these HBT radius parameters. The leading contribution of their first and second harmonics are found to satisfy simple constraints. This allows for a minimal, azimuthally sensitive parametrization of all first and second harmonic coefficients in terms of only two additional fit parameters. We determine to what extent these parameters can be extracted from experimental data despite finite multiplicity fluctuations and the resulting uncertainty in the reconstruction of the reaction plane.Comment: 14 pages, RevTeX, 7 eps-figures include

    Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures

    Get PDF
    In cryptanalysis, solving the discrete logarithm problem (DLP) is key to assessing the security of many public-key cryptosystems. The index-calculus methods, that attack the DLP in multiplicative subgroups of finite fields, require solving large sparse systems of linear equations modulo large primes. This article deals with how we can run this computation on GPU- and multi-core-based clusters, featuring InfiniBand networking. More specifically, we present the sparse linear algebra algorithms that are proposed in the literature, in particular the block Wiedemann algorithm. We discuss the parallelization of the central matrix--vector product operation from both algorithmic and practical points of view, and illustrate how our approach has contributed to the recent record-sized DLP computation in GF(28092^{809}).Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal. \<http://europar2014.dcc.fc.up.pt/\&gt
    • …
    corecore