In cryptanalysis, solving the discrete logarithm problem (DLP) is key to
assessing the security of many public-key cryptosystems. The index-calculus
methods, that attack the DLP in multiplicative subgroups of finite fields,
require solving large sparse systems of linear equations modulo large primes.
This article deals with how we can run this computation on GPU- and
multi-core-based clusters, featuring InfiniBand networking. More specifically,
we present the sparse linear algebra algorithms that are proposed in the
literature, in particular the block Wiedemann algorithm. We discuss the
parallelization of the central matrix--vector product operation from both
algorithmic and practical points of view, and illustrate how our approach has
contributed to the recent record-sized DLP computation in GF(2809).Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal.
\<http://europar2014.dcc.fc.up.pt/\>