27 research outputs found

    Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits.

    No full text
    Teuchert-Noodt G. Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits. J Neural Transm Suppl. 2000;(60):315-333.Based on developmental principles and insights from animal research about neuroplasticity in cell assemblies, this article is to propose a view of plasticity that promotes a link between hippocampal and prefrontal structure and function. Both the mitotic activity (counting of BrdU-labeled cells) in hippocampal dentatus and the maturation of dopamine fibres (quantitative immunochemistry of mesoprefrontal projection) in the prefrontal cortex proved to be a measurable combination for investigating the complex chain of events that relate activity dependent neuroplasticity to normal as well as to pathological maturational processes. With our animal model we demonstrate that both rearing conditions and neuroactive substances can effectively interfere with developmental plasticity and induce a malfunctional adaptation of prefrontal structures and neurotransmitter systems (dopamine, GABA). In the hippocampal dentatus, where ontogenetic plasticity proved to be preserved by continued neuro- and synaptogenesis, serious damage can be internalized without simultaneous disruption of neural dynamics offering an approach to reverse dysfunctional reorganization in the prefrontal cortex
    corecore