11 research outputs found

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Quantum back-action-evading measurement of motion in a negative mass reference frame

    Get PDF
    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random back action perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. Here we demonstrate that the quantum back action on a macroscopic mechanical oscillator measured in the reference frame of an atomic spin oscillator can be evaded. The collective quantum measurement on this novel hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a drum mode of a millimeter size dielectric membrane and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes an effective negative mass oscillator, while the opposite orientation corresponds to a positive mass oscillator. The quantum back action is evaded in the negative mass setting and is enhanced in the positive mass case. The hybrid quantum system presented here paves the road to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.Comment: 20 pages, 6 figures, 1 tabl

    Fortpflanzungsmodus und Meiose apomiktischer BlĂĽtenpflanzen

    No full text
    corecore