907 research outputs found
Discrete Symmetries from Broken and the MSSM
In order that discrete symmetries should not be violated by gravitational
effects, it is necessary to gauge them. In this paper we discuss the gauging of
from the breaking of a high energy gauge symmetry, and derive
consistency conditions for the resulting discrete symmetry fr om the
requirement of anomaly cancellation in the parent symmetry. These results are
then applied to a detailed analysis of the possible discrete symmetries
forbidding proton decay in the minimal supersymmetric standard model.Comment: 14 pages, plain TEX, computer problems fixed since first versio
Nonequilibrium phase transitions in models of adsorption and desorption
The nonequilibrium phase transition in a system of diffusing, coagulating
particles in the presence of a steady input and evaporation of particles is
studied. The system undergoes a transition from a phase in which the average
number of particles is finite to one in which it grows linearly in time. The
exponents characterizing the mass distribution near the critical point are
calculated in all dimensions.Comment: 10 pages, 2 figures (To appear in Phys. Rev. E
A modeling approach to understanding OLED performance improvements arising from spatial variations in guest:host blend ratio
Phosphorescent organic light emitting diodes (OLEDs) suffer from efficiency roll off, where device efficiency rapidly decays at higher luminance. One strategy to minimize this loss of efficiency at higher luminance is the use of non-uniform or graded guest:host blend ratios within the emissive layer. This work applies a multi-scale modeling framework to elucidate the mechanisms by which a non-uniform blend ratio can change the performance of an OLED. Mobility and exciton data are extracted from a kinetic Monte–Carlo model, which is then coupled to a drift diffusion model for fast sampling of the parameter space. The model is applied to OLEDs with uniform, linear, and stepwise graduations in the blend ratio in the emissive layer. The distribution of the guests in the film was found to affect the mobility of the charge carriers, and it was determined that having a graduated guest profile broadened the recombination zone, leading to a reduction in second order annihilation rates. That is, there was a reduction in triplet–triplet and triplet-polaron annihilation. Reducing triplet–triplet and triplet-polaron annihilation would lead to an improvement in device efficiency
Interference effects in electronic transport through metallic single-wall carbon nanotubes
In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed
experimentally, that metallic nanotubes, strongly coupled to external
electrodes, may act as coherent molecular waveguides for electronic transport.
The experimental results were supported by theoretical analysis based on the
scattering matrix approach. In this paper we analyze theoretically this problem
using a real-space approach, which makes it possible to control quality of
interface contacts. Electronic structure of the nanotube is taken into account
within the tight-binding model. External electrodes and the central part
(sample) are assumed to be made of carbon nanotubes, while the contacts between
electrodes and the sample are modeled by appropriate on-site (diagonal) and
hopping (off-diagonal) parameters. Conductance is calculated by the Green
function technique combined with the Landauer formalism. In the plots
displaying conductance {\it vs.} bias and gate voltages, we have found typical
diamond structure patterns, similar to those observed experimentally. In
certain cases, however, we have found new features in the patterns, like a
double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.
Kang-Redner Anomaly in Cluster-Cluster Aggregation
The large time, small mass, asymptotic behavior of the average mass
distribution \pb is studied in a -dimensional system of diffusing
aggregating particles for . By means of both a renormalization
group computation as well as a direct re-summation of leading terms in the
small reaction-rate expansion of the average mass distribution, it is shown
that \pb \sim \frac{1}{t^d} (\frac{m^{1/d}}{\sqrt{t}})^{e_{KR}} for , where and . In two
dimensions, it is shown that \pb \sim \frac{\ln(m) \ln(t)}{t^2} for . Numerical simulations in two dimensions supporting the analytical
results are also presented.Comment: 11 pages, 6 figures, Revtex
Recommended from our members
Lifetime embrittlement of reactor core materials
Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10{sup 24} n/M{sup 2} (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K{sub IC} due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K{sub IC} plus its lower hydrogen absorption characteristics compared with Zircaloy-2
Electron scattering in multi-wall carbon-nanotubes
We analyze two scattering mechanisms that might cause intrinsic electronic
resistivity in multi-wall carbon nanotubes: scattering by dopant impurities,
and scattering by inter-tube electron-electron interaction. We find that for
typically doped multi-wall tubes backward scattering at dopants is by far the
dominating effect.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
Closely related alpha-tropomyosin mRNAs in quail fibroblasts and skeletal muscle cells.
We describe the analysis of two quail cDNA clones representing distinct but closely related alpha-tropomyosin mRNAs. cDNA clone cC101 corresponds to a 1.2-kilobase RNA which accumulates to high levels during myoblast differentiation and which encodes the major isoform of skeletal muscle alpha-tropomyosin. cDNA clone cC102 corresponds to a 2-kilobase RNA which is abundant in cultured embryonic skin fibroblasts and which encodes one of two alpha-tropomyosin-related fibroblast tropomyosins of 35,000 and 34,000 daltons apparent molecular mass (class 1 tropomyosins). The cC102 protein is unique among reported nonstriated-muscle tropomyosins in being identical in amino acid sequence to the major isoform of skeletal muscle alpha-tropomyosin over an uninterrupted stretch of at least 183 amino acids (residues 75-257). The two protein sequences differ in the COOH-terminal region beginning with residue 258. Because the cC101 and cC102 RNAs share an extensive region (at least 373 nucleotides) of nucleotide sequence identity upstream of the codon for residue 258, they are likely derived from a single gene by alternative RNA splicing, as was recently proposed in the case of related beta-tropomyosin mRNAs in human fibroblasts and skeletal muscle (MacLeod, A. R., Houlker, C., Reinach, R. C., Smillie, L. B., Talbot, K., Modi, G., and Walsh, F. S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7835-7837). No alpha-tropomyosin-related RNAs are abundant in undifferentiated myoblasts. This suggests the possibility of a fibroblast-specific function, as opposed to a general nonmuscle-cell function for class 1 tropomyosins and also has implications for the regulation of alpha-tropomyosin gene expression during embryonic development
Quantum Anti-Zeno Effect
We demonstrate that near threshold decay processes may be accelerated by
repeated measurements. Examples include near threshold photodetachment of an
electron from a negative ion, and spontaneous emission in a cavity close to the
cutoff frequency, or in a photon band gap material.Comment: 4 pages, 3 figure
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
- …