28,448 research outputs found
Real-time dynamics in spin-1/2 chains with adaptive time-dependent DMRG
We investigate the influence of different interaction strengths and
dimerizations on the magnetization transport in antiferromagnetic spin-1/2
XXZ-chains. We focus on the real-time evolution of the inhomogeneous initial
state with all spins pointing up along the z axis in the left half and down in
the right half of the chain, using the adaptive time-dependent density-matrix
renormalization group (adaptive t-DMRG). We find on time-scales accessible to
us ballistic magnetization transport for small Sz-Sz-interaction and arbitrary
dimerization, but almost no transport for stronger Sz-Sz-interaction, with a
sharp crossover at Jz=1. At Jz=1 results indicate superdiffusive transport.
Additionally, we perform a detailed analysis of the error made by the adaptive
time-dependent DMRG using the fact that the evolution in the XX-model is known
exactly. We find that the error at small times is dominated by the error made
by the Trotter decomposition, whereas for longer times the DMRG truncation
error becomes the most important, with a very sharp crossover at some "runaway"
time.Comment: 13 pages, 20 figure
High-efficiency quantum interrogation measurements via the quantum Zeno effect
The phenomenon of quantum interrogation allows one to optically detect the
presence of an absorbing object, without the measuring light interacting with
it. In an application of the quantum Zeno effect, the object inhibits the
otherwise coherent evolution of the light, such that the probability that an
interrogating photon is absorbed can in principle be arbitrarily small. We have
implemented this technique, demonstrating efficiencies exceeding the 50%
theoretical-maximum of the original ``interaction-free'' measurement proposal.
We have also predicted and experimentally verified a previously unsuspected
dependence on loss; efficiencies of up to 73% were observed and the feasibility
of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett;
submitted June 11, 199
The Power Spectrum of the PSC Redshift Survey
We measure the redshift-space power spectrum P(k) for the recently completed
IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500
galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with
simulations shows that our estimated errors on P(k) are realistic, and that
systematic errors due to the finite survey volume are small for wavenumbers k
>~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between
those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller
error bars; it falls slightly more steeply to smaller scales. We have fitted
families of CDM-like models using the Peacock-Dodds formula for non-linear
evolution; the results are somewhat sensitive to the assumed small-scale
velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s
yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if
\sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded.
There is little evidence for any `preferred scale' in the power spectrum or
non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures.
Accepted by MNRA
Molecular elasticity and the geometric phase
We present a method for solving the Worm Like Chain (WLC) model for twisting
semiflexible polymers to any desired accuracy. We show that the WLC free energy
is a periodic function of the applied twist with period 4 pi. We develop an
analogy between WLC elasticity and the geometric phase of a spin half system.
These analogies are used to predict elastic properties of twist-storing
polymers. We graphically display the elastic response of a single molecule to
an applied torque. This study is relevant to mechanical properties of
biopolymers like DNA.Comment: five pages, one figure, revtex, revised in the light of referee's
comments, to appear in PR
Diagonal Ladders: A New Class of Models for Strongly Coupled Electron Systems
We introduce a class of models defined on ladders with a diagonal structure
generated by plaquettes. The case corresponds to the necklace
ladder and has remarkable properties which are studied using DMRG and recurrent
variational ansatzes. The AF Heisenberg model on this ladder is equivalent to
the alternating spin-1/spin-1/2 AFH chain which is known to have a
ferrimagnetic ground state (GS). For doping 1/3 the GS is a fully doped (1,1)
stripe with the holes located mostly along the principal diagonal while the
minor diagonals are occupied by spin singlets. This state can be seen as a Mott
insulator of localized Cooper pairs on the plaquettes. A physical picture of
our results is provided by a model of plaquettes coupled diagonally
with a hopping parameter . In the limit we recover the
original model on the necklace ladder while for weak hopping parameter
the model is easily solvable. The GS in the strong hopping regime is
essentially an "on link" Gutzwiller projection of the weak hopping GS. We
generalize the model to diagonal ladders with and the 2D
square lattice. We use in our construction concepts familiar in Statistical
Mechanics as medial graphs and Bratelli diagrams.Comment: REVTEX file, 22 pages (twocolumn), 35 figures inserted in text. 12
Table
Chirality Violation in QCD Reggeon Interactions
The appearance of the triangle graph infra-red axial anomaly in reduced quark
loops contributing to QCD triple-regge interactions is studied. In a dispersion
relation formalism, the anomaly can only be present in the contributions of
unphysical triple discontinuities. In this paper an asymptotic discontinuity
analysis is applied to high-order feynman diagrams to show that the anomaly
does indeed occur in sufficiently high-order reggeized gluon interactions. The
reggeon states involved must contain reggeized gluon combinations with the
quantum numbers of the anomaly (winding-number) current. A direct connection
with the well-known U(1) problem is thus established. Closely related diagrams
that contribute to the pion/pomeron and triple pomeron couplings in color
superconducting QCD are also discussed.Comment: 52 pages, 29 PS figures in the tex
Spin, Charge and Quasiparticle Gaps in the One-Dimensional Kondo Lattice with f^2 Configuration
The ground state properties of the one-dimensional Kondo lattice with an f^2
configuration at each site are studied by the density matrix renormalization
group method. At half-filling, competition between the Kondo exchange J and the
antiferromagnetic intra f-shell exchange I leads to reduction of energy gaps
for spin, quasi-particle and charge excitations. The attractive force among
conduction electrons is induced by the competition and the bound state is
formed. As J/I increases the f^2 singlet gives way to the Kondo singlet as the
dominant local correlation. The remarkable change of the quasi-particle gap is
driven by the change of the spin-1/2 excitation character from the itinerant
one to the localized one. Possible metal-insulator transition is discussed
which may occur as the ratio J/I is varied by reference to mean-field results
in the f^2 lattice system and the two impurity Kondo system.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp
Spin Gap in a Doped Kondo Chain
We show that the Kondo chain away from half-filling has a spin gap upon the
introduction of an additional direct Heisenberg coupling between localized
spins. This is understood in the weak-Kondo-coupling limit of the
Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit
by a mapping to a modified t-J model. Only for certain ranges of filling and
Heisenberg coupling does the spin gap phase extend from weak to strong
coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and
clarification
Investigating Ca II emission in the RS CVn binary ER Vulpeculae using the Broadening Function Formalism
The synchronously rotating G stars in the detached, short-period (0.7 d),
partially eclipsing binary, ER Vul, are the most chromospherically active
solar-type stars known. We have monitored activity in the Ca II H & K reversals
for almost an entire orbit. Rucinski's Broadening Function Formalism allows the
photospheric contribution to be objectively subtracted from the highly blended
spectra. The power of the BF technique is also demonstrated by the good
agreement of radial velocities with those measured by others from less crowded
spectral regions. In addition to strong Ca II emission from the primary and
secondary, there appears to be a high-velocity stream flowing onto the
secondary where it stimulates a large active region on the surface 30 - 40
degrees in advance of the sub-binary longitude. A model light curve with a spot
centered on the same longitude also gives the best fit to the observed light
curve. A flare with approximately 13% more power than at other phases was
detected in one spectrum. We suggest ER Vul may offer a magnified view of the
more subtle chromospheric effects synchronized to planetary revolution seen in
certain `51 Peg'-type systems.Comment: Accepted to AJ; 17 pages and 16 figure
- …