39 research outputs found

    Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters

    Get PDF
    The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures. © Springer Science+Business Media B.V. 2009

    Lack of evidence of disease contamination in ovarian tissue harvested for cryopreservation from patients with Hodgkin lymphoma and analysis of factors predictive of oocyte yield

    Get PDF
    Ovarian cryopreservation is a promising technique to preserve fertility in women with Hodgkin lymphoma (HL) treated with chemotherapy. Thus, the aim of this study was to examine harvested ovarian tissue for subclinical involvement by HL by morphology/immunohistochemistry, and to define patient and treatment factors predictive of oocyte yield. This was a retrospective analysis of 26 ovarian tissue samples harvested for cryopreservation from women with HL. Histology, immunohistochemistry and follicle density (number mm−3) was examined. Disease status and preharvest chemotherapy details were obtained on 24 patients. The median age was 22 years (range 13–29). Seven of 24 patients had infradiaphragmatic disease at time of harvest. Nine of 20 patients had received chemotherapy preharvest (ABVD (Adriamycin¼, Bleomycin, Vinblastine and Dacarbazine)=7, other regimens=2). The seven receiving ABVD showed no difference in follicle density compared to patients not receiving treatment (n=14); (median=1555 vs 1620 mm3 P=0.97). Follicle density measurement showed no correlation with patient age (R2=0.0001, P=0.99). There was no evidence of HL involvement in the 26 samples examined (95% CI=0–11%). In conclusion, subclinical involvement of HL has not been identified in ovarian tissue, even when patients have infradiaphragmatic disease. Furthermore, the quality of tissue harvested does not appear to be adversely affected by patient's age or prior ABVD chemotherapy
    corecore