4 research outputs found

    Evolution of Soil Carbon Storage and Morphometric Properties of Afforested Soils in the U.S. Great Plains

    Get PDF
    The objective of this project was to use detailed soil profi le descriptions and soil carbon analyses to determine the soil C sequestration potential of tree planting across climatic gradients in the U.S. Great Plains. Tree windbreak age ranged from 19 to 70 years and age of cultivation from 22 to ~110 years. At each site, soil pits were prepared within the tree planting, the adjacent crop fi elds, and nearby undisturbed grassland. Windbreak soils had consistently thicker soil organic carbon (SOC)- enriched A or A+AB horizons when compared to the crop fi elds. The thickness of A or A+AB horizons in the windbreak soils were comparable to the undisturbed grassland soils. A linear relationship was detected between the difference in A+AB thickness of soils beneath windbreaks and undisturbed grasslands and a climate index (hydrothermal coeffi cient, HTC). These results indicate that tree windbreaks with more cool and moist climate conditions are more favorable for SOC accumulation in the surface soil. The relationship between SOC accumulation and climate factors enables the estimation of soil carbon stocks in existing windbreaks and the prediction of potential carbon sequestration of future plantings

    Windbreaks in North American Agricultural Systems

    Get PDF
    Windbreaks are a major component of successful agricultural systems throughout the world. The focus of this chapter is on temperate-zone, commercial, agricultural systems in North America, where windbreaks contribute to both producer profitability and environmental quality by increasing crop production while simultaneously reducing the level of off-farm inputs. They help control erosion and blowing snow, improve animal health and survival under winter conditions, reduce energy consumption of the farmstead unit, and enhance habitat diversity, providing refuges for predatory birds and insects. On a larger landscape scale windbreaks provide habitat for various types of wildlife and have the potential to contribute significant benefits to the carbon balance equation, easing the economic burdens associated with climate change. For a windbreak to function properly, it must be designed with the needs of the landowner in mind. The ability of a windbreak to meet a specific need is determined by its structure: both external structure, width, height, shape, and orientation as well as the internal structure; the amount and arrangement of the branches, leaves, and stems of the trees or shrubs in the windbreak. In response to windbreak structure, wind flow in the vicinity of a windbreak is altered and the microclimate in sheltered areas is changed; temperatures tend to be slightly higher and evaporation is reduced. These types of changes in microclimate can be utilized to enhance agricultural sustainability and profitability. While specific mechanisms of the shelter response remain unclear and are topics for further research, the two biggest challenges we face are: developing a better understanding of why producers are reluctant to adopt windbreak technology and defining the role of woody plants in the agricultural landscape
    corecore