8 research outputs found

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Genotype-by-age interaction and identification of longevity-associated genes from microarray data

    No full text
    Microarray-based comparisons of long-lived and normal mouse strains represent a promising approach for dissecting the basis of lifespan extension in higher organisms. Recently, Boylston et al. (2006) generated a genome-wide data set that allowed expression levels of Snell (Pit1dw/dw) and Ames (Prop1df/df) long-lived mice to be compared with age-matched control mice across different ages (6–24 months). Longevity-associated genes were identified as those genes exhibiting differential expression between long-lived and normal mice at every age examined. In this communication, an alternative approach to identifying longevity-associated genes is suggested and applied to the data sets considered by Boylston et al. (2006). Longevity-associated genes are defined as those exhibiting significant genotype-by-age interaction with respect to expression levels of long-lived and normal mice, and a total of 63 longevity-associated genes are identified. This approach may lend greater confidence to the inference that expression of identified genes specifically underlies aging differences between long-lived and normal genotypes

    Identification of longevity-associated genes in long-lived Snell and Ames dwarf mice

    No full text
    Recent landmark molecular genetic studies have identified an evolutionarily conserved insulin/IGF-1 signal transduction pathway that regulates lifespan. In C. elegans, Drosophila, and rodents, attenuated insulin/IGF-1 signaling appears to regulate lifespan and enhance resistance to environmental stress. The Ames (Prop1df/df) and Snell (Pit1dw/dw) hypopituitary dwarf mice with growth hormone (GH), thyroid-stimulating hormone (TSH), and prolactin deficiencies live 40–60% longer than control mice. Both mutants are resistant to multiple forms of environmental stress in vitro. Taken collectively, these genetic models indicate that diminished insulin/IGF-l signaling may play a central role in the determination of mammalian lifespan by conferring resistance to exogenous and endogenous stressors. These pleiotropic endocrine pathways control diverse programs of gene expression that appear to orchestrate the development of a biological phenotype that promotes longevity. With the ability to investigate thousands of genes simultaneously, several microarray surveys have identified potential longevity assurance genes and provided information on the mechanism(s) by which the dwarf genotypes (dw/dw) and (df/df), and caloric restriction may lead to longevity. We propose that a comparison of specific changes in gene expression shared between Snell and Ames dwarf mice may provide a deeper understanding of the transcriptional mechanisms of longevity determination. Furthermore, we propose that a comparison of the physiological consequences of the Pit1dw and Prop1df mutations may reveal transcriptional profiles similar to those reported for the C. elegans and Drosophila mutants. In this study we have identified classes of genes whose expression is similarly affected in both Snell and Ames dwarf mice. Our comparative microarray data suggest that specific detoxification enzymes of the P450 (CYP) family as well as oxidative and steroid metabolism may play a key role in longevity assurance of the Snell and Ames dwarf mouse mutants. We propose that the altered expression of these genes defines a biochemical phenotype which may promote longevity in Snell and Ames dwarf mice

    Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity

    No full text
    The accumulation of stochastic DNA damage throughout an organism's lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative st
    corecore