41 research outputs found

    An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice

    Get PDF
    Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI

    Experimental traumatic brain injury

    Get PDF
    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury

    Colorectal and uterine movement and tension of the inferior hypogastric plexus in cadavers

    Get PDF
    Background: Hypotheses on somatovisceral dysfunction often assume interference by stretch or compression of the nerve supply to visceral structures. The purpose of this study is to examine the potential of pelvic visceral movement to create tension of the loose connective tissue that contains the fine branches of the inferior hypogastric nerve plexus. Methods: Twenty eight embalmed human cadavers were examined. Pelvic visceral structures were displaced by very gentle 5 N unidirectional tension and the associated movement of the endopelvic fascia containing the inferior hypogastric plexus that this caused was measured. Results: Most movement of the fascia containing the inferior hypogastric plexus was obtained by pulling the rectosigmoid junction or broad ligament of the uterus. The plexus did not cross any vertebral joints and the fascia containing it did not move on pulling the hypogastric nerve. Conclusions: Uterine and rectosigmoid displacement produce most movement of the fascia containing the hypogastric nerve plexus, potentially resulting in nerve tension. In the living this might occur as a consequence of menstruation, pregnancy or constipation. This may be relevant to somatovisceral reflex theories of the effects of manual therapy on visceral conditions.Ian P Johnso
    corecore