32 research outputs found

    Survey of Materials for Nanoskiving and Influence of the Cutting Process on the Nanostructures Produced

    No full text
    This paper examines the factors that influence the quality of nanostructures fabricated by sectioning thin films with an ultramicrotome ("nanoskiving"). It surveys different materials (metals, ceramics, semiconductors, and conjugated polymers), deposition techniques (evaporation, sputter deposition, electroless deposition, chemical-vapor deposition, solution-phase synthesis, and spin-coating), and geometries (nanowires or two-dimensional arrays of rings and crescents). It then correlates the extent of fragmentation of the nanostructures with the composition of the thin films, the methods used to deposit them, and the parameters used for sectioning. There are four major conclusions. (i) Films of soft and compliant metals (those that have bulk values of hardness less than or equal to those of palladium, or 500 MPa) tend to remain intact upon sectioning, whereas hard and stiff metals (those that have values of hardness greater than or equal to those of platinum, or >= 500 MPa) tend to fragment. (ii) All conjugated polymers tested form intact nanostructures. (iii) The extent of fragmentation is lowest when the direction of cutting is perpendicular to the exposed edge of the embedded film. (iv) The speed of cutting-from 0.1 to 8 mm/s-has no effect on the frequency of defects. Defects generated during sectioning include scoring from defects in the knife, delamination of the film from the matrix, and compression of the matrix. The materials tested were: aluminum, titanium, nickel, copper, palladium, silver, platinum, gold, lead, bismuth, germanium, silicon dioxide (SiO2), alumina (Al2O3), tin-doped indium oxide (ITO), lead sulfide nanocrystals, the semiconducting polymers poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), poly(3-hexylthiophene) (P3HT), and poly(benzimidazobenzophenanthroline ladder) (BBL), and the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)

    Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices

    Get PDF
    Accessing the intrinsic functionality of molecules for electronic applications; 1-3; , light emission; 4; or sensing; 5; requires reliable electrical contacts to those molecules. A self-assembled monolayer (SAM) sandwich architecture; 6; is advantageous for technological applications, but requires a non-destructive, top-contact fabrication method. Various approaches ranging from direct metal evaporation; 6; over poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; 7; (PEDOT:PSS) or graphene; 8; interlayers to metal transfer printing; 9; have been proposed. Nevertheless, it has not yet been possible to fabricate SAM-based devices without compromising film integrity, intrinsic functionality or mass-fabrication compatibility. Here we develop a top-contact approach to SAM-based devices that simultaneously addresses all these issues, by exploiting the fact that a metallic nanoparticle can provide a reliable electrical contact to individual molecules; 10; . Our fabrication route involves first the conformal and non-destructive deposition of a layer of metallic nanoparticles directly onto the SAM (itself laterally constrained within circular pores in a dielectric matrix, with diameters ranging from 60 nanometres to 70 micrometres), and then the reinforcement of this top contact by direct metal evaporation. This approach enables the fabrication of thousands of identical, ambient-stable metal-molecule-metal devices. Systematic variation of the composition of the SAM demonstrates that the intrinsic molecular properties are not affected by the nanoparticle layer and subsequent top metallization. Our concept is generic to densely packed layers of molecules equipped with two anchor groups, and provides a route to the large-scale integration of molecular compounds into solid-state devices that can be scaled down to the single-molecule level
    corecore