117 research outputs found

    DB4 ECONOMIC EVALUATION OF THIAZOLIDINEDIONES AS ADD-ON THERAPY FOR TREATMENT OF TYPE 2 DIABETIC PATIENTS IN THE TAIWANESE NATIONAL HEALTH INSURANCE SYSTEM

    Get PDF

    Inflammatory pseudo-tumor of the liver: a rare pathological entity

    Get PDF
    Inflammatory pseudo-tumor (IPT) of the liver is a rare benign neoplasm and is often mistaken as a malignant entity. Few cases have been reported in the literature and the precise etiology of inflammatory pseudotumor remains unknown. Patients usually present with fever, abdominal pain and jaundice. The proliferation of spindled myofibroblast cells mixed with variable amounts of reactive inflammatory cells is characteristics of IPT. We reviewed the literature regarding possible etiology for IPT with a possible suggested etiology

    A systematic review of the literature examining the diagnostic efficacy of measurement of fractionated plasma free metanephrines in the biochemical diagnosis of pheochromocytoma

    Get PDF
    BACKGROUND: Fractionated plasma metanephrine measurements are commonly used in biochemical testing in search of pheochromocytoma. METHODS: We aimed to critically appraise the diagnostic efficacy of fractionated plasma free metanephrine measurements in detecting pheochromocytoma. Nine electronic databases, meeting abstracts, and the Science Citation Index were searched and supplemented with previously unpublished data. Methodologic and reporting quality was independently assessed by two endocrinologists using a checklist developed by the Standards for Reporting of Diagnostic Studies Accuracy Group and data were independently abstracted. RESULTS: Limitations in methodologic quality were noted in all studies. In all subjects (including those with genetic predisposition): the sensitivities for detection of pheochromocytoma were 96%–100% (95% CI ranged from 82% to 100%), whereas the specificities were 85%–100% (95% CI ranged from 78% to 100%). Statistical heterogeneity was noted upon pooling positive likelihood ratios when those with predisposition to disease were included (p < 0.001). However, upon pooling the positive or negative likelihood ratios for patients with sporadic pheochromocytoma (n = 191) or those at risk for sporadic pheochromocytoma (n = 718), no statistical heterogeneity was noted (p = 0.4). For sporadic subjects, the pooled positive likelihood ratio was 5.77 (95% CI = 4.90, 6.81) and the pooled negative likelihood ratio was 0.02 (95% CI = 0.01, 0.07). CONCLUSION: Negative plasma fractionated free metanephrine measurements are effective in ruling out pheochromocytoma. However, a positive test result only moderately increases suspicion of disease, particularly when screening for sporadic pheochromocytoma

    Drosophila S2 Cells Are Non-Permissive for Vaccinia Virus DNA Replication Following Entry via Low pH-Dependent Endocytosis and Early Transcription

    Get PDF
    Vaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis

    Demonstration of Metabolic and Cellular Effects of Portal Vein Ligation Using Multi-Modal PET/MRI Measurements in Healthy Rat Liver.

    Get PDF
    OBJECTIVES: In the early recognition of portal vein ligation (PVL) induced tumor progression, positron emission tomography and magnetic resonance imaging (PET/MRI) could improve diagnostic accuracy of conventionally used methods. It is unknown how PVL affects metabolic patterns of tumor free hepatic tissues. The aim of this preliminary study is to evaluate the effect of PVL on glucose metabolism, using PET/MRI imaging in healthy rat liver. MATERIALS AND METHODS: Male Wistar rats (n = 30) underwent PVL. 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET/MRI imaging (nanoScan PET/MRI) and morphological/histological examination were performed before (Day 0) and 1, 2, 3, and 7 days after PVL. Dynamic PET data were collected and the standardized uptake values (SUV) for ligated and non-ligated liver lobes were calculated in relation to cardiac left ventricle (SUVVOI/SUVCLV) and mean liver SUV (SUVVOI/SUVLiver). RESULTS: PVL induced atrophy of ligated lobes, while non-ligated liver tissue showed compensatory hypertrophy. Dynamic PET scan revealed altered FDG kinetics in both ligated and non-ligated liver lobes. SUVVOI/SUVCLV significantly increased in both groups of lobes, with a maximal value at the 2nd postoperative day and returned near to the baseline 7 days after the ligation. After PVL, ligated liver lobes showed significantly higher tracer uptake compared to the non-ligated lobes (significantly higher SUVVOI/SUVLiver values were observed at postoperative day 1, 2 and 3). The homogenous tracer biodistribution observed before PVL reappeared by 7th postoperative day. CONCLUSION: The observed alterations in FDG uptake dynamics should be taken into account during the assessment of PET data until the PVL induced atrophic and regenerative processes are completed

    Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo

    Get PDF
    Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies

    Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    Get PDF
    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis

    A Benchmark of Parametric Methods for Horizontal Transfers Detection

    Get PDF
    Horizontal gene transfer (HGT) has appeared to be of importance for prokaryotic species evolution. As a consequence numerous parametric methods, using only the information embedded in the genomes, have been designed to detect HGTs. Numerous reports of incongruencies in results of the different methods applied to the same genomes were published. The use of artificial genomes in which all HGT parameters are controlled allows testing different methods in the same conditions. The results of this benchmark concerning 16 representative parametric methods showed a great variety of efficiencies. Some methods work very poorly whatever the type of HGTs and some depend on the conditions or on the metrics used. The best methods in terms of total errors were those using tetranucleotides as criterion for the window methods or those using codon usage for gene based methods and the Kullback-Leibler divergence metric. Window methods are very sensitive but less specific and detect badly lone isolated gene. On the other hand gene based methods are often very specific but lack of sensitivity. We propose using two methods in combination to get the best of each category, a gene based one for specificity and a window based one for sensitivity

    Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae)

    Get PDF
    Background: Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of genetree conflicts in this tribe. Results: We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-lik
    corecore