450 research outputs found

    Comparative analysis of 2D and 3D models of turbulent natural convection and thermal surface radiation in closed areas

    Get PDF
    Turbulent natural convection with surface thermal radiation in air-filled enclosures has been investigated. The equations of conservation of mass, momentum and energy are solved using both finite difference and control volume methods. It should be noted that the working medium is Newtonian and heat conducting fluid, where the Boussinesq approximation is valid. The walls are supposed to be gray, diffuse emitters and reflectors of radiation. The left and right surfaces of the enclosure are isothermal walls, while other surfaces are adiabatic walls. The considered fluid flow is turbulent. The main aim of the present research is to compare the heat transfer process in 2D and 3D enclosures. Detailed results including flow profiles, temperature fields, and average Nusselt numbers have been presented

    Stabilization of Polar Nano Regions in Pb-free ferroelectrics

    Full text link
    Formation of polar nano regions through solid-solution additions are known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nano regions, understanding their real-space atomic structure and dynamics of formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nano regions in the Pb-free ferroelectric of Ba(Zr,Ti)O3. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently, which leads to increased local correlation among dipoles below THz frequencies. The dynamic pair distribution function technique demonstrates unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties

    Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux

    Get PDF
    BACKGROUND:: Hyperventilation is known to decrease cerebral blood flow (CBF) and to impair cerebral metabolism, but the threshold in patients undergoing intravenous anesthesia is unknown. The authors hypothesized that reduced CBF associated with moderate hyperventilation might impair cerebral aerobic metabolism in patients undergoing intravenous anesthesia. METHODS:: Thirty male patients scheduled for coronary surgery were included in a prospective, controlled crossover trial. Measurements were performed under fentanyl-midazolam anesthesia in a randomized sequence aiming at partial pressures of carbon dioxide of 30 and 50 mmHg. Endpoints were CBF, blood flow velocity in the middle cerebral artery, and cerebral metabolic rates for oxygen, glucose, and lactate. Global CBF was measured using a modified Kety-Schmidt technique with argon as inert gas tracer. CBF velocity of the middle cerebral artery was recorded by transcranial Doppler sonography. Data were presented as mean (SD). Two-sided paired t tests and one-way ANOVA for repeated measures were used for statistical analysis. RESULTS:: Moderate hyperventilation significantly decreased CBF by 60%, blood flow velocity by 41%, cerebral oxygen delivery by 58%, and partial pressure of oxygen of the jugular venous bulb by 45%. Cerebral metabolic rates for oxygen and glucose remained unchanged; however, net cerebral lactate efflux significantly increased from -0.38 (2.18) to -2.41(2.43) μmol min 100 g. CONCLUSIONS:: Moderate hyperventilation, when compared with moderate hypoventilation, in patients with cardiovascular disease undergoing intravenous anesthesia increased net cerebral lactate efflux and markedly reduced CBF and partial pressure of oxygen of the jugular venous bulb, suggesting partial impairment of cerebral aerobic metabolism at clinically relevant levels of hypocapnia. Copyrigh

    Argon does not affect cerebral circulation or metabolism in male humans

    Get PDF
    Objective: Accumulating data have recently underlined argońs neuroprotective potential. However, to the best of our knowledge, no data are available on the cerebrovascular effects of argon (Ar) in humans. We hypothesized that argon inhalation does not affect mean blood flow velocity of the middle cerebral artery (Vmca), cerebral flow index (FI), zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe), resistance area product (RAP) and the arterio-jugular venous content differences of oxygen (AJVDO2), glucose (AJVDG), and lactate (AJVDL) in anesthetized patients. Materials and methods: In a secondary analysis of an earlier controlled cross-over trial we compared parameters of the cerebral circulation under 15 minutes exposure to 70%Ar/30%O2versus 70%N2/30%O2in 29 male patients under fentanyl-midazolam anaesthesia before coronary surgery. Vmca was measured by transcranial Doppler sonography. ZFP and RAP were estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. CPPe was calculated as the difference between mean arterial pressure and ZFP. AJVDO2, AJVDG and AJVDL were calculated as the differences in contents between arterial and jugular-venous blood of oxygen, glucose, and lactate. Statistical analysis was done by t-tests and ANOVA. Results: Mechanical ventilation with 70% Ar did not cause any significant changes in mean arterial pressure, Vmca, FI, ZFP, CPPe, RAP, AJVDO2, AJVDG, and AJVDL. Discussion: Short-term inhalation of 70% Ar does not affect global cerebral circulation or metabolism in male humans under general anaesthesia

    Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133

    Get PDF
    In the context of targeted therapy, we addressed the possibility of developing a drug delivery nanocarrier capable to specifically reach cancer cells that express the most prominent marker associated with cancer stem cell (CSC) phenotype, AC133. For this purpose, 100 nm lipid nanocapsules (LNCs) were functionalized with a monoclonal antibody (mAb) directed against AC133 according to two distinct methods: firstly, post-insertion within 100 nm LNCs of a lipid poly(ethylene glycol) functionalized with reactive-sulfhydryl maleimide groups (DSPE-PEG2000-maleimide) followed by thiolated mAb coupling, and, secondly, creation of a thiolated lipo-immunoglobulin between DSPE-PEG2000-maleimide and AC133, then post-inserted within LNCs. Due to the reduced number of purification steps, lower amounts of DSPE-PEG2000-maleimide that were necessary as well as lower number of free maleimide functions present onto the surface of immuno-LNC, the second method was found to be more appropriate. Thus, 126 nm AC133-LNC with a zeta potential of −22 mV while keeping a narrow distribution were developed. Use of the IgG1κ isotype control-immunoglobulins produced similar control IgG1-LNCs. Micro-Bradford colorimetric assay indicated a fixation of about 40 immunoglobulins per LNC. Use of human Caco-2 cells that constitutively express AC133 (Caco-2-AC133high) allowed addressing the behavior of the newly functionalized immuno-LNCs. siRNA knockown strategy permitted to obtain Caco-2-AC133low for comparison. Immunofluorescence-combined flow cytometry analysis demonstrated that the epitope-recognition function of AC133 antibody was preserved when present on immuno-LNCs. Although grafting of immunoglobulins onto the surface of LNCs repressed their internalization within Caco-2 cells as evaluated by flow cytometry, AC133-specific cellular binding was obtained with AC133-LNC as assessed by computer-assisted fluorescence microscopy. In conclusion, interest of AC133-LNCs as niche carriers is discussed toward the development of CSC targeted chemo- or radio-nanomedicines

    Accuracy and Prognostic Role of NCCT-ASPECTS Depend on Time from Acute Stroke Symptom-onset for both Human and Machine-learning Based Evaluation.

    Get PDF
    PURPOSE We hypothesize that the detectability of early ischemic changes on non-contrast computed tomography (NCCT) is limited in hyperacute stroke for both human and machine-learning based evaluation. In short onset-time-to-imaging (OTI), the CT angiography collateral status may identify fast stroke progressors better than early ischemic changes quantified by ASPECTS. METHODS In this retrospective, monocenter study, CT angiography collaterals (Tan score) and ASPECTS on acute and follow-up NCCT were evaluated by two raters. Additionally, a machine-learning algorithm evaluated the ASPECTS scale on the NCCT (e-ASPECTS). In this study 136 patients from 03/2015 to 12/2019 with occlusion of the main segment of the middle cerebral artery, with a defined symptom-onset-time and successful mechanical thrombectomy (MT) (modified treatment in cerebral infarction score mTICI = 2c or 3) were evaluated. RESULTS Agreement between acute and follow-up ASPECTS were found to depend on OTI for both human (Intraclass correlation coefficient, ICC = 0.43 for OTI < 100 min, ICC = 0.57 for OTI 100-200 min, ICC = 0.81 for OTI ≥ 200 min) and machine-learning based ASPECTS evaluation (ICC = 0.24 for OTI < 100 min, ICC = 0.61 for OTI 100-200 min, ICC = 0.63 for OTI ≥ 200 min). The same applied to the interrater reliability. Collaterals were predictors of a favorable clinical outcome especially in hyperacute stroke with OTI < 100 min (collaterals: OR = 5.67 CI = 2.38-17.8, p < 0.001; ASPECTS: OR = 1.44, CI = 0.91-2.65, p = 0.15) while ASPECTS was in prolonged OTI ≥ 200 min (collaterals OR = 4.21,CI = 1.36-21.9, p = 0.03; ASPECTS: OR = 2.85, CI = 1.46-7.46, p = 0.01). CONCLUSION The accuracy and reliability of NCCT-ASPECTS are time dependent for both human and machine-learning based evaluation, indicating reduced detectability of fast stroke progressors by NCCT. In hyperacute stroke, collateral status from CT-angiography may help for a better prognosis on clinical outcome and explain the occurrence of futile recanalization

    Correction to: Accuracy and Prognostic Role of NCCT-ASPECTS Depend on Time from Acute Stroke Symptom-onset for both Human and Machine-learning Based Evaluation.

    Get PDF
    PURPOSE: We hypothesize that the detectability of early ischemic changes on non-contrast computed tomography (NCCT) is limited in hyperacute stroke for both human and machine-learning based evaluation. In short onset-time-to-imaging (OTI), the CT angiography collateral status may identify fast stroke progressors better than early ischemic changes quantified by ASPECTS. METHODS: In this retrospective, monocenter study, CT angiography collaterals (Tan score) and ASPECTS on acute and follow-up NCCT were evaluated by two raters. Additionally, a machine-learning algorithm evaluated the ASPECTS scale on the NCCT (e-ASPECTS). In this study 136 patients from 03/2015 to 12/2019 with occlusion of the main segment of the middle cerebral artery, with a defined symptom-onset-time and successful mechanical thrombectomy (MT) (modified treatment in cerebral infarction score mTICI = 2c or 3) were evaluated. RESULTS: Agreement between acute and follow-up ASPECTS were found to depend on OTI for both human (Intraclass correlation coefficient, ICC = 0.43 for OTI < 100 min, ICC = 0.57 for OTI 100–200 min, ICC = 0.81 for OTI ≥ 200 min) and machine-learning based ASPECTS evaluation (ICC = 0.24 for OTI < 100 min, ICC = 0.61 for OTI 100–200 min, ICC = 0.63 for OTI ≥ 200 min). The same applied to the interrater reliability. Collaterals were predictors of a favorable clinical outcome especially in hyperacute stroke with OTI < 100 min (collaterals: OR = 5.67 CI = 2.38–17.8, p < 0.001; ASPECTS: OR = 1.44, CI = 0.91–2.65, p = 0.15) while ASPECTS was in prolonged OTI ≥ 200 min (collaterals OR = 4.21,CI = 1.36–21.9, p = 0.03; ASPECTS: OR = 2.85, CI = 1.46–7.46, p = 0.01). CONCLUSION: The accuracy and reliability of NCCT-ASPECTS are time dependent for both human and machine-learning based evaluation, indicating reduced detectability of fast stroke progressors by NCCT. In hyperacute stroke, collateral status from CT-angiography may help for a better prognosis on clinical outcome and explain the occurrence of futile recanalization. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00062-021-01110-5) contains supplementary material, which is available to authorized users

    International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999

    Full text link
    Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd
    corecore