386 research outputs found

    Field-tuned quantum tunneling in a supramolecule dimer [Mn4]2[Mn_4]_2

    Full text link
    Field-tuned quantum tunneling in two single-molecule magnets coupled antiferromagnetically and formed a supramolecule dimer is studied. We obtain step-like magnetization curves by means of the numerically exact solution of the time-dependent Schr\H{o}dinger equation. The steps in magnetization curves show the phenomenon of quantum resonant tunneling quantitatively. The effects of the sweeping rate of applied field is discussed. These results obtained from quantum dynamical evolution well agree with the recent experiment[W.Wernsdorfer et al. Nature 416(2002)406].Comment: 11 pages, 4 figures, 2 tables. Submited to Phys. Rev.

    Butterfly hysteresis loop and dissipative spin reversal in the S=1/2, V15 molecular complex

    Full text link
    Time resolved magnetization measurements have been performed on a spin 1/2 molecular complex, so called V15_{15}. Despite the absence of a barrier, magnetic hysteresis is observed over a timescale of several seconds. A detailed analysis in terms of a dissipative two level model is given, in which fluctuations and splittings are of same energy. Spin-phonon coupling leads to long relaxation times and to a particular "butterfly" hysteresis loop.Comment: LaTeX/RevTeX, 3 figures.Approved for publication in PR

    Quantum phase interference and spin parity in Mn12 single-molecule magnets

    Full text link
    Magnetization measurements of Mn12 molecular nanomagnets with spin ground states of S = 10 and S = 19/2 showresonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Spin-parity dependent tunneling is established by comparing the quantum phase interference of integer and half-integer spin systems.Comment: 5 pages, 5 figure

    Magnetic Anisotropy of a Single Cobalt Nanoparticle

    Full text link
    Using a new microSQUID set-up, we investigate magnetic anisotropy in a single 1000-atoms cobalt cluster. This system opens new fields in the characterization and the understanding of the origin of magnetic anisotropy in such nanoparticles. For this purpose, we report three-dimensional switching field measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix. We are able to separate the different magnetic anisotropy contributions and evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure

    Quantum tunneling of two coupled single-molecular magnets

    Get PDF
    Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by means of the numerical exact diagonalization method, and apply them to the recently synthesized supramoleculer dimer [Mn4]2 The model parameters are calculated for the dimer based on the tunneling process. The absence of tunneling at zero field and sweeping rate effect on the step height in the hysterisis loops are understood very well in this theory.Comment: 4 pages including 3 figure and 1 tabl

    Nuclear spin driven quantum relaxation in LiY_0.998Ho_0.002F_4

    Full text link
    Staircase hysteresis loops of the magnetization of a LiY_0.998Ho_0.002F_4 single crystal are observed at subkelvin temperatures and low field sweep rates. This behavior results from quantum dynamics at avoided level crossings of the energy spectrum of single Ho^{3+} ions in the presence of hyperfine interactions. Enhanced quantum relaxation in constant transverse fields allows the study of the relative magnitude of tunnel splittings. At faster sweep rates, non-equilibrated spin-phonon and spin-spin transitions, mediated by weak dipolar interactions, lead to magnetization oscillations and additional steps.Comment: 5 pages, 5 eps figures, using RevTe

    Quantum nucleation in ferromagnets with tetragonal and hexagonal symmetries

    Full text link
    The phenomenon of quantum nucleation is studied in a ferromagnet in the presence of a magnetic field at an arbitrary angle. We consider the magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal symmetry, respectively. By applying the instanton method in the spin-coherent-state path-integral representation, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for a thin film and for a bulk solid. Our results show that the rate of quantum nucleation and the crossover temperature depend on the orientation of the external magnetic field distinctly, which provides a possible experimental test for quantum nucleation in nanometer-scale ferromagnets.Comment: 19 pages and 3 figures, Final version and accepted by Phys. Rev. B (Feb. B1 2001

    Magnetization switching in a Heisenberg model for small ferromagnetic particles

    Full text link
    We investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy the spins can be expected to rotate coherently, while for sufficient large anisotropy they should behave Ising-like, i.e., the switching should then be due to nucleation. We study this crossover from coherent rotation to nucleation for the classical three-dimensional Heisenberg model with a finite anisotropy. The crossover is influenced by the size of the particle, the strength of the driving magnetic field, and the anisotropy. We discuss the relevant energy barriers which have to be overcome during the switching, and find theoretical arguments which yield the energetically favorable reversal mechanisms for given values of the quantities above. The results are confirmed by Monte Carlo simulations of Heisenberg and Ising models.Comment: 8 pages, Revtex, 11 Figures include
    • …
    corecore