386 research outputs found
Field-tuned quantum tunneling in a supramolecule dimer
Field-tuned quantum tunneling in two single-molecule magnets coupled
antiferromagnetically and formed a supramolecule dimer is studied. We obtain
step-like magnetization curves by means of the numerically exact solution of
the time-dependent Schr\H{o}dinger equation. The steps in magnetization curves
show the phenomenon of quantum resonant tunneling quantitatively. The effects
of the sweeping rate of applied field is discussed. These results obtained from
quantum dynamical evolution well agree with the recent experiment[W.Wernsdorfer
et al. Nature 416(2002)406].Comment: 11 pages, 4 figures, 2 tables. Submited to Phys. Rev.
Butterfly hysteresis loop and dissipative spin reversal in the S=1/2, V15 molecular complex
Time resolved magnetization measurements have been performed on a spin 1/2
molecular complex, so called V. Despite the absence of a barrier,
magnetic hysteresis is observed over a timescale of several seconds. A detailed
analysis in terms of a dissipative two level model is given, in which
fluctuations and splittings are of same energy. Spin-phonon coupling leads to
long relaxation times and to a particular "butterfly" hysteresis loop.Comment: LaTeX/RevTeX, 3 figures.Approved for publication in PR
Quantum phase interference and spin parity in Mn12 single-molecule magnets
Magnetization measurements of Mn12 molecular nanomagnets with spin ground
states of S = 10 and S = 19/2 showresonance tunneling at avoided energy level
crossings. The observed oscillations of the tunnel probability as a function of
the magnetic field applied along the hard anisotropy axis are due to
topological quantum phase interference of two tunnel paths of opposite
windings. Spin-parity dependent tunneling is established by comparing the
quantum phase interference of integer and half-integer spin systems.Comment: 5 pages, 5 figure
Magnetic Anisotropy of a Single Cobalt Nanoparticle
Using a new microSQUID set-up, we investigate magnetic anisotropy in a single
1000-atoms cobalt cluster. This system opens new fields in the characterization
and the understanding of the origin of magnetic anisotropy in such
nanoparticles. For this purpose, we report three-dimensional switching field
measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix.
We are able to separate the different magnetic anisotropy contributions and
evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure
Quantum tunneling of two coupled single-molecular magnets
Two single-molecule magnets are coupled antiferromagnetically to form a
supramolecule dimer. We study the coupling effect and tunneling process by
means of the numerical exact diagonalization method, and apply them to the
recently synthesized supramoleculer dimer [Mn4]2 The model parameters are
calculated for the dimer based on the tunneling process. The absence of
tunneling at zero field and sweeping rate effect on the step height in the
hysterisis loops are understood very well in this theory.Comment: 4 pages including 3 figure and 1 tabl
Nuclear spin driven quantum relaxation in LiY_0.998Ho_0.002F_4
Staircase hysteresis loops of the magnetization of a LiY_0.998Ho_0.002F_4
single crystal are observed at subkelvin temperatures and low field sweep
rates. This behavior results from quantum dynamics at avoided level crossings
of the energy spectrum of single Ho^{3+} ions in the presence of hyperfine
interactions. Enhanced quantum relaxation in constant transverse fields allows
the study of the relative magnitude of tunnel splittings. At faster sweep
rates, non-equilibrated spin-phonon and spin-spin transitions, mediated by weak
dipolar interactions, lead to magnetization oscillations and additional steps.Comment: 5 pages, 5 eps figures, using RevTe
Quantum nucleation in ferromagnets with tetragonal and hexagonal symmetries
The phenomenon of quantum nucleation is studied in a ferromagnet in the
presence of a magnetic field at an arbitrary angle. We consider the
magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal
symmetry, respectively. By applying the instanton method in the
spin-coherent-state path-integral representation, we calculate the dependence
of the rate of quantum nucleation and the crossover temperature on the
orientation and strength of the field for a thin film and for a bulk solid. Our
results show that the rate of quantum nucleation and the crossover temperature
depend on the orientation of the external magnetic field distinctly, which
provides a possible experimental test for quantum nucleation in nanometer-scale
ferromagnets.Comment: 19 pages and 3 figures, Final version and accepted by Phys. Rev. B
(Feb. B1 2001
Magnetization switching in a Heisenberg model for small ferromagnetic particles
We investigate the thermally activated magnetization switching of small
ferromagnetic particles driven by an external magnetic field. For low uniaxial
anisotropy the spins can be expected to rotate coherently, while for sufficient
large anisotropy they should behave Ising-like, i.e., the switching should then
be due to nucleation. We study this crossover from coherent rotation to
nucleation for the classical three-dimensional Heisenberg model with a finite
anisotropy. The crossover is influenced by the size of the particle, the
strength of the driving magnetic field, and the anisotropy. We discuss the
relevant energy barriers which have to be overcome during the switching, and
find theoretical arguments which yield the energetically favorable reversal
mechanisms for given values of the quantities above. The results are confirmed
by Monte Carlo simulations of Heisenberg and Ising models.Comment: 8 pages, Revtex, 11 Figures include
- …