11,945 research outputs found

    Marginal Fermi Liquid with a Two-Dimensional Patched Fermi Surface

    Full text link
    We consider a model composed of Landau quasiparticle states with patched Fermi surfaces (FS) sandwiched by states with flat FS to simulate the ``cold'' spot regions in cuprates. We calculate the one particle irreducible function and the self-energy up to two-loop order. Using renormalization group arguments we show that in the forward scattering channel the renormalized coupling constant is never infrared stable due to the flat FS sectors. Furthemore we show that the self-energy scales with energy as ReΣωlnω{\rm Re} \Sigma \sim \omega \ln \omega as ω0\omega \to 0, and thus the Fermi liquid state within each FS patch is turned into a marginal Fermi liquid.Comment: 5 pages, 3 ps figure

    Quasiparticles as composite objects in the RVB superconductor

    Full text link
    We study the nature of the superconducting state, the origin of d-wave pairing, and elementary excitations of a resonating valence bond (RVB) superconductor. We show that the phase string formulation of the t-J model leads to confinement of bare spinon and holon excitations in the superconducting state, though the vacuum is described by the RVB state. Nodal quasiparticles are obtained as composite excitations of spinon and holon excitations. The d-wave pairing symmetry is shown to arise from short range antiferromagnetic correlations

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure

    Leading Twist Amplitudes for Exclusive Neutrino Interactions in the Deeply Virtual Limit

    Full text link
    Neutrino scattering on nucleons in the regime of deeply virtual kinematics is studied both in the charged and the neutral electroweak sectors using a formalism developed by Blumlein, Robaschik, Geyer and Collaborators for the analysis of the Virtual Compton amplitude in the generalized Bjorken region. We discuss the structure of the leading twist amplitudes of the process.Comment: 14 pages, 1 fig revised final version to appear in Phys. Rev.

    Spectral function of the electron in a superconducting RVB state

    Full text link
    We present a model calculation of the spectral function of an electron in a superconducting resonating valence bond (RVB) state. The RVB state, described by the phase-string mean field theory is characterized by three important features: (i) spin-charge separation, (ii) short range antiferromagnetic correlations, and (iii) holon condensation. The results of our calculation are in good agreement with data obtained from Angle Resolved Photoemission Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping concentration.Comment: 4 pages, 3 figure

    The NSNS High Energy Beam Transport Line

    Get PDF
    In the National Spallation Neutron Source (NSNS) design, a 180 meter long transport line connects the 1 GeV linac to an accumulator ring. The linac beam has a current of 28 mA, pulse length of 1 ms, and 60 Hz rep rate. The high energy transport line consists of sixteen 60 degrees FODO cells, and accommodates a 90 degrees achromatic bend, an energy compressor, collimators, part of injection system, and enough diagnostic devices to measure the beam quality before injection. To reduce the uncontrolled beam losses, this line has nine beam halo scrapers and very tight tolerances on both transverse and longitudinal beam dynamics under space charge conditions. The design of this line is presented.Comment: 3 pages, transfer line desig

    Accurate determination of tensor network state of quantum lattice models in two dimensions

    Full text link
    We have proposed a novel numerical method to calculate accurately the physical quantities of the ground state with the tensor-network wave function in two dimensions. We determine the tensor network wavefunction by a projection approach which applies iteratively the Trotter-Suzuki decomposition of the projection operator and the singular value decomposition of matrix. The norm of the wavefunction and the expectation value of a physical observable are evaluated by a coarse grain renormalization group approach. Our method allows a tensor-network wavefunction with a high bond degree of freedom (such as D=8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well with those obtained by the quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table

    The cytoplasmic adaptor protein Caskin mediates Lar signal transduction during Drosophila motor axon guidance

    Get PDF
    The multiprotein complexes that receive and transmit axon pathfinding cues during development are essential to circuit generation. Here, we identify and characterize the Drosophila sterile α-motif (SAM) domain-containing protein Caskin, which shares homology with vertebrate Caskin, a CASK [calcium/calmodulin-(CaM)-activated serine-threonine kinase]-interacting protein. Drosophila caskin (ckn) is necessary for embryonic motor axon pathfinding and interacts genetically and physically with the leukocyte common antigen-related (Lar) receptor protein tyrosine phosphatase. In vivo and in vitro analyses of a panel of ckn loss-of-function alleles indicate that the N-terminal SAM domain of Ckn mediates its interaction with Lar. Like Caskin, Liprin-α is a neuronal adaptor protein that interacts with Lar via a SAM domain-mediated interaction. We present evidence that Lar does not bind Caskin and Liprin-α concurrently, suggesting they may assemble functionally distinct signaling complexes on Lar. Furthermore, a vertebrate Caskin homolog interacts with LAR family members, arguing that the role of ckn in Lar signal transduction is evolutionarily conserved. Last, we characterize several ckn mutants that retain Lar binding yet display guidance defects, implying the existence of additional Ckn binding partners. Indeed, we identify the SH2/SH3 adaptor protein Dock as a second Caskin-binding protein and find that Caskin binds Lar and Dock through distinct domains. Furthermore, whereas ckn has a nonredundant function in Lar-dependent signaling during motor axon targeting, ckn and dock have overlapping roles in axon outgrowth in the CNS. Together, these studies identify caskin as a neuronal adaptor protein required for axon growth and guidance
    corecore