12,924 research outputs found
Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels
An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area
Charged Rotating Black Holes in Equilibrium
Axially symmetric, stationary solutions of the Einstein-Maxwell equations
with disconnected event horizon are studied by developing a method of explicit
integration of the corresponding boundary-value problem. This problem is
reduced to non-leaner system of algebraic equations which gives relations
between the masses, the angular momenta, the angular velocities, the charges,
the distance parameters, the values of the electromagnetic field potential at
the horizon and at the symmetry axis. A found solution of this system for the
case of two charged non-rotating black holes shows that in general the total
mass depends on the distance between black holes. Two-Killing reduction
procedure of the Einstein-Maxwell equations is also discussed.Comment: LaTeX 2.09, no figures, 15 pages, v2, references added, introduction
section slightly modified; v3, grammar errors correcte
Quantum Sensor Miniaturization
The classical bound on image resolution defined by the Rayleigh limit can be
beaten by exploiting the properties of quantum mechanical entanglement. If
entangled photons are used as signal states, the best possible resolution is
instead given by the Heisenberg limit, an improvement proportional to the
number of entangled photons in the signal. In this paper we present a novel
application of entanglement by showing that the resolution obtained by an
imaging system utilizing separable photons can be achieved by an imaging system
making use of entangled photons, but with the advantage of a smaller aperture,
thus resulting in a smaller and lighter system. This can be especially valuable
in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology
Letter
Emergence of Periodic Structure from Maximizing the Lifetime of a Bound State Coupled to Radiation
Consider a system governed by the time-dependent Schr\"odinger equation in
its ground state. When subjected to weak (size ) parametric forcing
by an "ionizing field" (time-varying), the state decays with advancing time due
to coupling of the bound state to radiation modes. The decay-rate of this
metastable state is governed by {\it Fermi's Golden Rule}, , which
depends on the potential and the details of the forcing. We pose the
potential design problem: find which minimizes (maximizes
the lifetime of the state) over an admissible class of potentials with fixed
spatial support. We formulate this problem as a constrained optimization
problem and prove that an admissible optimal solution exists. Then, using
quasi-Newton methods, we compute locally optimal potentials. These have the
structure of a truncated periodic potential with a localized defect. In
contrast to optimal structures for other spectral optimization problems, our
optimizing potentials appear to be interior points of the constraint set and to
be smooth. The multi-scale structures that emerge incorporate the physical
mechanisms of energy confinement via material contrast and interference
effects.
An analysis of locally optimal potentials reveals local optimality is
attained via two mechanisms: (i) decreasing the density of states near a
resonant frequency in the continuum and (ii) tuning the oscillations of
extended states to make , an oscillatory integral, small. Our
approach achieves lifetimes, , for locally
optimal potentials with as compared with
for a typical potential. Finally, we
explore the performance of optimal potentials via simulations of the
time-evolution.Comment: 33 pages, 6 figure
Observation of B_s Production at the Y(5S) Resonance
Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B_s meson in e^+e^- annihilation at the Υ(5S) resonance. We find 14 candidates consistent with B_s decays into final states with a J/ψ or a D_s^((*)-). The probability that we have observed a background fluctuation is less than 8×10^(-10). We have established that at the energy of the Υ(5S) resonance B_s production proceeds predominantly through the creation of B_s^*B̅ _s^* pairs. We find σ(e^+e^-→B^s^*B̅ ^*)=[0.11_(-0.03)^(+0.04)(stat)±0.02(syst)]  nb, and set the following limits: σ(e^+e^-→B_sB̅ _s)/σ(e^+e^-→B_s^*B̅ _s^*)<0.16 and [σ(e^+e^-→B_sB̅ _s^*)+σ(e^+e^-→B_s*B̅ _s)]/σ(e^+e^-→B_s*B̅ _s^*)<0.16 (90% C.L.). The mass of the B_s^* meson is measured to be M_(B_s^*=[5.414±0.001(stat)±0.003(syst)]  GeV/c^2
Implementation of the Quantum Fourier Transform
The quantum Fourier transform (QFT) has been implemented on a three bit
nuclear magnetic resonance (NMR) quantum computer, providing a first step
towards the realization of Shor's factoring and other quantum algorithms.
Implementation of the QFT is presented with fidelity measures, and state
tomography. Experimentally realizing the QFT is a clear demonstration of NMR's
ability to control quantum systems.Comment: 6 pages, 2 figure
Fidelity Decay as an Efficient Indicator of Quantum Chaos
Recent work has connected the type of fidelity decay in perturbed quantum
models to the presence of chaos in the associated classical models. We
demonstrate that a system's rate of fidelity decay under repeated perturbations
may be measured efficiently on a quantum information processor, and analyze the
conditions under which this indicator is a reliable probe of quantum chaos and
related statistical properties of the unperturbed system. The type and rate of
the decay are not dependent on the eigenvalue statistics of the unperturbed
system, but depend on the system's eigenvector statistics in the eigenbasis of
the perturbation operator. For random eigenvector statistics the decay is
exponential with a rate fixed precisely by the variance of the perturbation's
energy spectrum. Hence, even classically regular models can exhibit an
exponential fidelity decay under generic quantum perturbations. These results
clarify which perturbations can distinguish classically regular and chaotic
quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction
and discussion
Entanglement Generation of Nearly-Random Operators
We study the entanglement generation of operators whose statistical
properties approach those of random matrices but are restricted in some way.
These include interpolating ensemble matrices, where the interval of the
independent random parameters are restricted, pseudo-random operators, where
there are far fewer random parameters than required for random matrices, and
quantum chaotic evolution. Restricting randomness in different ways allows us
to probe connections between entanglement and randomness. We comment on which
properties affect entanglement generation and discuss ways of efficiently
producing random states on a quantum computer.Comment: 5 pages, 3 figures, partially supersedes quant-ph/040505
The Lattice Schwinger Model: Confinement, Anomalies, Chiral Fermions and All That
In order to better understand what to expect from numerical CORE computations
for two-dimensional massless QED (the Schwinger model) we wish to obtain some
analytic control over the approach to the continuum limit for various choices
of fermion derivative. To this end we study the Hamiltonian formulation of the
lattice Schwinger model (i.e., the theory defined on the spatial lattice with
continuous time) in gauge. We begin with a discussion of the solution
of the Hamilton equations of motion in the continuum, we then parallel the
derivation of the continuum solution within the lattice framework for a range
of fermion derivatives. The equations of motion for the Fourier transform of
the lattice charge density operator show explicitly why it is a regulated
version of this operator which corresponds to the point-split operator of the
continuum theory and the sense in which the regulated lattice operator can be
treated as a Bose field. The same formulas explicitly exhibit operators whose
matrix elements measure the lack of approach to the continuum physics. We show
that both chirality violating Wilson-type and chirality preserving SLAC-type
derivatives correctly reproduce the continuum theory and show that there is a
clear connection between the strong and weak coupling limits of a theory based
upon a generalized SLAC-type derivative.Comment: 27 pages, 3 figures, revte
On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox
We develop a Hamiltonian formalism which can be used to discuss the physics
of a massless scalar field in a gravitational background of a Schwarzschild
black hole. Using this formalism we show that the time evolution of the system
is unitary and yet all known results such as the existence of Hawking radiation
can be readily understood. We then point out that the Hamiltonian formalism
leads to interesting observations about black hole entropy and the information
paradox.Comment: 45 pages, revte
- …