6,744 research outputs found

    Groundstate with Zero Eigenvalue for Generalized Sombrero-shaped Potential in NN-dimensional Space

    Full text link
    Based on an iterative method for solving the goundstate of Schroedinger equation, it is found that a kind of generalized Sombrero-shaped potentials in N-dimensional space has groundstates with zero eigenvalue. The restrictions on the parameters in the potential are discussed.Comment: 8 pages, 3 figure

    Iterative Solutions for Low Lying Excited States of a Class of Schroedinger Equation

    Full text link
    The convergent iterative procedure for solving the groundstate Schroedinger equation is extended to derive the excitation energy and the wave function of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling gg is not too small.Comment: 14 pages, 4 figure

    Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice

    Full text link
    We have precisely determined the ground state phase diagram of the quantum spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the tensor renormalization group method. We find that the ferromagnetic, ferroquadrupolar, and a large part of the antiferromagnetic phases are stable against quantum fluctuations. However, around the phase where the ground state is antiferroquadrupolar ordered in the classical limit, quantum fluctuations suppress completely all magnetic orders, leading to a plaquette order phase which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the evidence of our numerical results, the quantum phase transition between the antiferromagnetic phase and the plaquette phase is found to be either a direct second order or a very weak first order transition.Comment: 6 pages, 9 figures, published versio

    Soliton solutions of the improved quark mass density-dependent model at finite temperature

    Get PDF
    The improved quark mass density-dependent model (IQMDD) based on soliton bag model is studied at finite temperature. Appling the finite temperature field theory, the effective potential of the IQMDD model and the bag constant B(T)B(T) have been calculated at different temperatures. It is shown that there is a critical temperature TC110MeVT_{C}\simeq 110 \mathrm{MeV}. We also calculate the soliton solutions of the IQMDD model at finite tmperature. It turns out that when T<TCT<T_{C}, there is a bag constant B(T)B(T) and the soliton solutions are stable. However, when T>TCT>T_{C} the bag constant B(T)=0B(T)=0 and there is no soliton solution, therefore, the confinement of quarks are removed quickly.Comment: 10 pages, 9 figures; Version to appear in Physical Review

    Motion planning and control strategy of a cable-driven body weight support gait training robot

    Get PDF
    In this paper, a cable-driven body weight support gait training robot (C-BWSGTR) that provides patients with partial body weight support as well as a kind of stable gait training driving force was designed; this device enabled those patients to walk again. Firstly, the overall configuration of the C-BWSGTR was determined, and the structural composition and working principle of the robot were established. Secondly, the vector algebra method was applied to carry out the kinematic analysis and establish the mathematical model of the C-BWSGTR. The displacement of each cable during the patient gait training was also calculated. Thirdly, the motion planning of the C-BWSGTR was carried out in stages, using the time–phase distribution relationship based on an S-shaped speed curve. Meanwhile, the displacement, speed, and acceleration of each cable during the patient gait training were calculated and corresponding change curves were generated. Finally, a position servo composite control strategy for the C-BWSGTR was designed by analyzing the robot's dynamic characteristics of the forward channel transfer function. The simulation analysis and prototype experiment in this paper verified that the designed composite position servo control strategy can meet the requirements of the system with respect to stability and a fast response of the system to the loading command.</p

    Optical and transport properties in doped two-leg ladder antiferromagnet

    Get PDF
    Within the t-J model, the optical and transport properties of the doped two-leg ladder antiferromagnet are studied based on the fermion-spin theory. It is shown that the optical and transport properties of the doped two-leg ladder antiferromagnet are mainly governed by the holon scattering. The low energy peak in the optical conductivity is located at a finite energy, while the resistivity exhibits a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which are consistent with the experiments.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev. B65 (2002) (April 15 issue

    Two Kinds of Iterative Solutions for Generalized Sombrero-shaped Potential in NN-dimensional Space

    Full text link
    Based on two different iteration procedures the groundstate wave functions and energies for N-dimensional generalized Sombrero-shaped potentials are solved. Two kinds of trial functions for the iteration procedure are defined. The iterative solutions are convergent nicely to consistent results for different choices of iteration procedures and trial functions.Comment: 16 pages, 3 figure

    A Stem Cell-Based Tool for Small Molecule Screening in Adipogenesis

    Get PDF
    Techniques for small molecule screening are widely used in biological mechanism study and drug discovery. Here, we reported a novel adipocyte differentiation assay for small molecule selection, based on human mesenchymal stem cells (hMSCs) transduced with fluorescence reporter gene driven by adipogenic specific promoter - adipocyte Protein 2 (aP2; also namely Fatty Acid Binding Protein 4, FABP4). During normal adipogenic induction as well as adipogenic inhibition by Ly294002, we confirmed that the intensity of green fluorescence protein corresponded well to the expression level of aP2 gene. Furthermore, this variation of green fluorescence protein intensity can be read simply through fluorescence spectrophotometer. By testing another two small molecules in adipogenesis –Troglitazone and CHIR99021, we proved that this is a simple and sensitive method, which could be applied in adipocyte biology, drug discovery and toxicological study in the future
    corecore