271 research outputs found

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Deep Local and Global Spatiotemporal Feature Aggregation for Blind Video Quality Assessment

    Full text link
    In recent years, deep learning has achieved promising success for multimedia quality assessment, especially for image quality assessment (IQA). However, since there exist more complex temporal characteristics in videos, very little work has been done on video quality assessment (VQA) by exploiting powerful deep convolutional neural networks (DCNNs). In this paper, we propose an efficient VQA method named Deep SpatioTemporal video Quality assessor (DeepSTQ) to predict the perceptual quality of various distorted videos in a no-reference manner. In the proposed DeepSTQ, we first extract local and global spatiotemporal features by pre-trained deep learning models without fine-tuning or training from scratch. The composited features consider distorted video frames as well as frame difference maps from both global and local views. Then, the feature aggregation is conducted by the regression model to predict the perceptual video quality. Finally, experimental results demonstrate that our proposed DeepSTQ outperforms state-of-the-art quality assessment algorithms

    Deep Multi-Scale Features Learning for Distorted Image Quality Assessment

    Full text link
    Image quality assessment (IQA) aims to estimate human perception based image visual quality. Although existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem, it still needs to improve the DNN-based quality assessment models by exploiting efficient multi-scale features. In this paper, motivated by the human visual system (HVS) combining multi-scale features for perception, we propose to use pyramid features learning to build a DNN with hierarchical multi-scale features for distorted image quality prediction. Our model is based on both residual maps and distorted images in luminance domain, where the proposed network contains spatial pyramid pooling and feature pyramid from the network structure. Our proposed network is optimized in a deep end-to-end supervision manner. To validate the effectiveness of the proposed method, extensive experiments are conducted on four widely-used image quality assessment databases, demonstrating the superiority of our algorithm

    Semantics-Aligned Representation Learning for Person Re-identification

    Full text link
    Person re-identification (reID) aims to match person images to retrieve the ones with the same identity. This is a challenging task, as the images to be matched are generally semantically misaligned due to the diversity of human poses and capture viewpoints, incompleteness of the visible bodies (due to occlusion), etc. In this paper, we propose a framework that drives the reID network to learn semantics-aligned feature representation through delicate supervision designs. Specifically, we build a Semantics Aligning Network (SAN) which consists of a base network as encoder (SA-Enc) for re-ID, and a decoder (SA-Dec) for reconstructing/regressing the densely semantics aligned full texture image. We jointly train the SAN under the supervisions of person re-identification and aligned texture generation. Moreover, at the decoder, besides the reconstruction loss, we add Triplet ReID constraints over the feature maps as the perceptual losses. The decoder is discarded in the inference and thus our scheme is computationally efficient. Ablation studies demonstrate the effectiveness of our design. We achieve the state-of-the-art performances on the benchmark datasets CUHK03, Market1501, MSMT17, and the partial person reID dataset Partial REID. Code for our proposed method is available at: https://github.com/microsoft/Semantics-Aligned-Representation-Learning-for-Person-Re-identification.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), code has been release

    Blind Omnidirectional Image Quality Assessment with Viewport Oriented Graph Convolutional Networks

    Full text link
    Quality assessment of omnidirectional images has become increasingly urgent due to the rapid growth of virtual reality applications. Different from traditional 2D images and videos, omnidirectional contents can provide consumers with freely changeable viewports and a larger field of view covering the 360∘×180∘360^{\circ}\times180^{\circ} spherical surface, which makes the objective quality assessment of omnidirectional images more challenging. In this paper, motivated by the characteristics of the human vision system (HVS) and the viewing process of omnidirectional contents, we propose a novel Viewport oriented Graph Convolution Network (VGCN) for blind omnidirectional image quality assessment (IQA). Generally, observers tend to give the subjective rating of a 360-degree image after passing and aggregating different viewports information when browsing the spherical scenery. Therefore, in order to model the mutual dependency of viewports in the omnidirectional image, we build a spatial viewport graph. Specifically, the graph nodes are first defined with selected viewports with higher probabilities to be seen, which is inspired by the HVS that human beings are more sensitive to structural information. Then, these nodes are connected by spatial relations to capture interactions among them. Finally, reasoning on the proposed graph is performed via graph convolutional networks. Moreover, we simultaneously obtain global quality using the entire omnidirectional image without viewport sampling to boost the performance according to the viewing experience. Experimental results demonstrate that our proposed model outperforms state-of-the-art full-reference and no-reference IQA metrics on two public omnidirectional IQA databases

    Holographic description of elastic photon-proton and photon-photon scattering

    Full text link
    We investigate the elastic photon-proton and photon-photon scattering in a holographic QCD model, focusing on the Regge regime. Considering contributions of the Pomeron and Reggeon exchange, the total and differential cross sections are calculated. While our model involves several parameters, by virtue of the universality of the Pomeron and Reggeon, for most of them the values determined in the preceding study on the proton-proton and proton-antiproton scattering can be employed. Once the two adjustable parameters, the Pomeron-photon and Reggeon-photon coupling constant, are determined with the experimental data of the total cross sections, predicting the both cross sections in a wide kinematic region, from the GeV to TeV scale, becomes possible. We show that the total cross section data can be well described within the model, and our predictions for the photon-proton differential cross section are consistent with the data.Comment: 13 pages, 3 figure
    • …
    corecore