4,161 research outputs found
Environmental legislation as a driver of design
and other research output
Vacuum Gas Tungsten Arc Welding
A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures
The shape of equality: discourses around the Section 28 repeal in Scotland
This article focuses on conceptualizations of equality in the discourses deployed in the campaign to repeal Section 28 in Scotland. I use the parliamentary debates and two newspapers: the Daily Record, which supported the campaign to Keep the Clause, and The Guardian, which supported repeal, to exemplify the different discursive articulations around equality and citizenship. I suggest that the Scottish example provides further evidence of the ways in which liberalism naturalizes heterosexuality as the standard for citizenship and thus bequeaths a hierarchy of 'equality' and citizenship in the realm of sexuality, wherein lesbian and gay citizenship is either rendered invalid or characterized as 'special rights'. However, within the narrow confines of the parliamentary debates, more expansive and differentiated notions of citizenship and equality are evident. Whilst I conclude that the 'shape' of equality achieved through the repeal has been moulded to support institutionalized heterosexuality - with Section 28 replaced by statutory guidelines on sex education which advocate marriage - I also suggest equality is contested, both through the recognition of transformations in heterosexual family forms and the appeal to non-discrimination as a democratic principle. It is possible, therefore, that current destabilizations of the heterosexual social order simultaneously destabilize the precepts of liberal democracy
Super-roughening as a disorder-dominated flat phase
We study the phenomenon of super-roughening found on surfaces growing on
disordered substrates. We consider a one-dimensional version of the problem for
which the pure, ordered model exhibits a roughening phase transition. Extensive
numerical simulations combined with analytical approximations indicate that
super-roughening is a regime of asymptotically flat surfaces with non-trivial,
rough short-scale features arising from the competition between surface tension
and disorder. Based on this evidence and on previous simulations of the
two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219
(2000)], we argue that this scenario is general and explains equally well the
hitherto poorly understood two-dimensional case.Comment: 7 pages, 4 figures. Accepted for publication in Europhysics Letter
Roughening Transition of Interfaces in Disordered Systems
The behavior of interfaces in the presence of both lattice pinning and random
field (RF) or random bond (RB) disorder is studied using scaling arguments and
functional renormalization techniques. For the first time we show that there is
a continuous disorder driven roughening transition from a flat to a rough state
for internal interface dimensions 2<D<4. The critical exponents are calculated
in an \epsilon-expansion. At the transition the interface shows a
superuniversal logarithmic roughness for both RF and RB systems. A transition
does not exist at the upper critical dimension D_c=4. The transition is
expected to be observable in systems with dipolar interactions by tuning the
temperature.Comment: 4 pages, RevTeX, 1 postscript figur
A theorem on the absence of phase transitions in one-dimensional growth models with onsite periodic potentials
We rigorously prove that a wide class of one-dimensional growth models with
onsite periodic potential, such as the discrete sine-Gordon model, have no
phase transition at any temperature . The proof relies on the spectral
analysis of the transfer operator associated to the models. We show that this
operator is Hilbert-Schmidt and that its maximum eigenvalue is an analytic
function of temperature.Comment: 6 pages, no figures, submitted to J Phys A: Math Ge
Constraints on the Detectability of Cosmic Topology from Observational Uncertainties
Recent observational results suggest that our universe is nearly flat and
well modelled within a CDM framework. The observed values of
and inevitably involve uncertainties. Motivated
by this, we make a systematic study of the necessary and sufficient conditions
for undetectability as well as detectability (in principle) of cosmic topology
(using pattern repetition) in presence of such uncertainties. We do this by
developing two complementary methods to determine detectability for nearly flat
universes. Using the first method we derive analytical conditions for
undetectability for infinite redshift, the accuracy of which is then confirmed
by the second method. Estimates based on WMAP data together with other
measurements of the density parameters are used to illustrate both methods,
which are shown to provide very similar results for high redshifts.Comment: 16 pages, 1 figure, LaTeX2
Recommended from our members
Correlation of the crack initiation stress with epoxy network topology
Much controversy surrounds the dependence of stress intensity factor of glassy thermosets, epoxies in particular, with crosslink density. One could scan the literature and find references that claim K{sub Ic} increases with crosslink density, decreases with crosslink density, or is independent of crosslink density. The authors feel that two factors contribute to this confusion. First, a typical method for assessing this dependence relies on modifying the crosslink density by changing the precursor epoxy molecular weight. On the other hand, one could change stoichiometry or quench the reaction at intermediate extents of reaction to obtain large changes in crosslink density. However, most studies have not measured the resulting stress intensity factor of these partially cured systems at constant T-T{sub g}, where T{sub g} is the glass transition temperature of the epoxy. Since T{sub g} can change significantly with cure and since fracture processes at the crack tip are dissipative, they must work at constant T-T{sub g} to ensure that the nonlinear viscoelastic mechanisms are fairly compared. In this study, they quenched the reaction of the diglycidyl ether of bisphenol A (DGEBA) and diethanolamine (DEA) at various stages past the gel point and measured the three-point-bend stress intensity factor at a constant T-T{sub g} = {minus}50 C. The trend is clear and significant; increasing crosslink density directly increases the load-to-fail
Nature of phase transition(s) in striped phase of triangular-lattice Ising antiferromagnet
Different scenarios of the fluctuation-induced disordering of the striped
phase which is formed at low temperatures in the triangular-lattice Ising model
with the antiferromagnetic interaction of nearest and next-to-nearest neighbors
are analyzed and compared. The dominant mechanism of the disordering is related
to the formation of a network of domain walls, which is characterized by an
extensive number of zero modes and has to appear via the first-order phase
transition. In principle, this first-order transition can be preceded by a
continuous one, related to the spontaneous formation of double domain walls and
a partial restoration of the broken symmetry, but the realization of such a
scenario requires the fulfillment of rather special relations between the
coupling constants.Comment: 10 pages, 7 figures, ReVTeX
- …