5,596 research outputs found
Experimental verification of democratic particle motions by direct imaging of glassy colloidal systems
We analyze data from confocal microscopy experiments of a colloidal
suspension to validate predictions of rapid sporadic events responsible for
structural relaxation in a glassy sample. The trajectories of several thousand
colloidal particles are analyzed, confirming the existence of rapid sporadic
events responsible for the structural relaxation of significant regions of the
sample, and complementing prior observations of dynamical heterogeneity. The
emergence of relatively compact clusters of mobility allows the dynamics to
transition between the large periods of local confinement within its potential
energy surface, in good agreement with the picture envisioned long ago by Adam
and Gibbs and Goldstein.Comment: 4 pages, 5 figure
Properties of cage rearrangements observed near the colloidal glass transition
We use confocal microscopy to study the motions of particles in concentrated
colloidal systems. Near the glass transition, diffusive motion is inhibited, as
particles spend time trapped in transient ``cages'' formed by neighboring
particles. We measure the cage sizes and lifetimes, which respectively shrink
and grow as the glass transition approaches. Cage rearrangements are more
prevalent in regions with lower local concentrations and higher disorder.
Neighboring rearranging particles typically move in parallel directions,
although a nontrivial fraction move in anti-parallel directions, usually from
pairs of particles with initial separations corresponding to the local maxima
and minima of the pair correlation function , respectively.Comment: 5 pages, 4 figures; text & figures revised in v
Environmental legislation as a driver of design
and other research output
Two-Particle Microrheology of quasi-2D Viscous Systems
We study the correlated motions of colloidal particles in a quasi-2D system
(Human Serum Albumin (HSA) protein molecules at an air-water interface) for
different surface viscosities . We observe a transition in the
behavior of the correlated motion, from 2-D interface dominated at high
to bulk fluid-dependent at low . The correlated motions
can be scaled onto a master curve which captures the features of this
transition. This master curve also characterizes the spatial dependence of the
flow field of a viscous interface in response to a force. From the flow field
and the correlated particle motions, we calculate a two-particle MSD (mean
square displacement) for direct comparison with rheological measurements.Comment: 4 pages, 4 figures, submitted to PR
From Discrete Hopping to Continuum Modeling on Vicinal Surfaces with Applications to Si(001) Electromigration
Coarse-grained modeling of dynamics on vicinal surfaces concentrates on the
diffusion of adatoms on terraces with boundary conditions at sharp steps, as
first studied by Burton, Cabrera and Frank (BCF). Recent electromigration
experiments on vicinal Si surfaces suggest the need for more general boundary
conditions in a BCF approach. We study a discrete 1D hopping model that takes
into account asymmetry in the hopping rates in the region around a step and the
finite probability of incorporation into the solid at the step site. By
expanding the continuous concentration field in a Taylor series evaluated at
discrete sites near the step, we relate the kinetic coefficients and
permeability rate in general sharp step models to the physically suggestive
parameters of the hopping models. In particular we find that both the kinetic
coefficients and permeability rate can be negative when diffusion is faster
near the step than on terraces. These ideas are used to provide an
understanding of recent electromigration experiment on Si(001) surfaces where
step bunching is induced by an electric field directed at various angles to the
steps.Comment: 10 pages, 4 figure
Circles in the Sky: Finding Topology with the Microwave Background Radiation
If the universe is finite and smaller than the distance to the surface of
last scatter, then the signature of the topology of the universe is writ large
on the microwave background sky. We show that the microwave background will be
identified at the intersections of the surface of last scattering as seen by
different ``copies'' of the observer. Since the surface of last scattering is a
two-sphere, these intersections will be circles, regardless of the background
geometry or topology. We therefore propose a statistic that is sensitive to all
small, locally homogeneous topologies. Here, small means that the distance to
the surface of last scatter is smaller than the ``topology scale'' of the
universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant
of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant.
Grav. covering the Cleveland Topology & Cosmology Worksho
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Observational data hints at a finite universe, with spherical manifolds such
as the Poincare dodecahedral space tentatively providing the best fit.
Simulating the physics of a model universe requires knowing the eigenmodes of
the Laplace operator on the space. The present article provides explicit
polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare
dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary
tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces
L(p,1).Comment: v3. Final published version. 27 pages, 1 figur
Forced motion of a probe particle near the colloidal glass transition
We use confocal microscopy to study the motion of a magnetic bead in a dense
colloidal suspension, near the colloidal glass transition volume fraction
. For dense liquid-like samples near , below a threshold force
the magnetic bead exhibits only localized caged motion. Above this force, the
bead is pulled with a fluctuating velocity. The relationship between force and
velocity becomes increasingly nonlinear as is approached. The
threshold force and nonlinear drag force vary strongly with the volume
fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in
Europhysics Letter
- …