26 research outputs found

    Loss of Cofilin 1 Disturbs Actin Dynamics, Adhesion between Enveloping and Deep Cell Layers and Cell Movements during Gastrulation in Zebrafish

    Get PDF
    During gastrulation, cohesive migration drives associated cell layers to the completion of epiboly in zebrafish. The association of different layers relies on E-cadherin based cellular junctions, whose stability can be affected by actin turnover. Here, we examined the effect of malfunctioning actin turnover on the epibolic movement by knocking down an actin depolymerizing factor, cofilin 1, using antisense morpholino oligos (MO). Knockdown of cfl1 interfered with epibolic movement of deep cell layer (DEL) but not in the enveloping layer (EVL) and the defect could be specifically rescued by overexpression of cfl1. It appeared that the uncoordinated movements of DEL and EVL were regulated by the differential expression of cfl1 in the DEL, but not EVL as shown by in situ hybridization. The dissociation of DEL and EVL was further evident by the loss of adhesion between layers by using transmission electronic and confocal microscopy analyses. cfl1 morphants also exhibited abnormal convergent extension, cellular migration and actin filaments, but not involution of hypoblast. The cfl1 MO-induced cell migration defect was found to be cell-autonomous in cell transplantation assays. These results suggest that proper actin turnover mediated by Cfl1 is essential for adhesion between DEL and EVL and cell movements during gastrulation in zebrafish

    Gamete fusion site on the egg cell and autonomous establishment of cell polarity in the zygote

    No full text
    Gamete fusion activates the egg in animals and plants, and the gamete fusion site on the zygote might provide a possible cue for zygotic development and/or embryonic patterning. In angiosperms, a zygote generally divides into a two-celled proembryo consisting of an apical and a basal cell with different cell fates. This is a putative step in the formation of the apical-basal axis of the proembryo. We observed the positional relationship between the gamete fusion site and the division plane formed by zygotic cleavage using an in vitro fertilization system with rice gametes. There was no relationship between the gamete fusion site and the division plane leading to the two-celled proembryo. Thus, the gamete fusion site on the rice zygote does not appear to function as a determinant for positioning the zygote division plane, and the zygote apparently possesses autonomous potential to establish cell polarity along the apical-basal axis for its first cleavage

    Brown Algae as a Model for Plant Organogenesis

    No full text
    corecore