340 research outputs found
Improving mental health outcomes: achieving equity through quality improvement
Objective. To investigate equity of patient outcomes in a psychological therapy service, following increased access achieved by a quality improvement (QI) initiative. Design. Retrospective service evaluation of health outcomes; data analysed by ANOVA, chi-squared and Statistical Process Control. Setting. A psychological therapy service in Westminster, London, UK. Participants. People living in the Borough of Westminster, London, attending the service (from either healthcare professional or self-referral) between February 2009 and May 2012. Intervention(s). Social marketing interventions were used to increase referrals, including the promotion of the service through local media and through existing social networks. Main Outcome Measure(s). (i) Severity of depression on entry using Patient Health Questionnaire-9 (PHQ9). (ii) Changes to severity of depression following treatment (ΔPHQ9). (iii) Changes in attainment of a meaningful improvement in condition assessed by a key performance indicator. Results. Patients from areas of high deprivation entered the service with more severe depression (M = 15.47, SD = 6.75), com-pared with patients from areas of low (M = 13.20, SD = 6.75) and medium (M = 14.44, SD = 6.64) deprivation. Patients in low
Acute Ethanol Effects on Focal Cerebral Ischemia in Nonfasted Rats
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66417/1/j.1530-0277.1997.tb03832.x.pd
Scaling laws near the conformal window of many-flavor QCD
We derive universal scaling laws for physical observables such as the
critical temperature, the chiral condensate, and the pion decay constant as a
function of the flavor number near the conformal window of many-flavor QCD in
the chiral limit. We argue on general grounds that the associated critical
exponents are all interrelated and can be determined from the critical exponent
of the running gauge coupling at the Caswell-Banks-Zaks infrared fixed point.
We illustrate our findings with the aid of nonperturbative functional
Renormalization Group (RG) calculations and low-energy QCD models.Comment: 18 pages, 4 figures, references added and discussion expanded
(matches JHEP version
Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions
Nanoparticle suspensions (also called nanofluids) are often polydisperse and
tend to settle with time. Settling kinetics in these systems are known to be
complex and hence challenging to understand. In this work, polydisperse
spherical alumina (Al2O3) nanoparticles in the size range of ~10-100nm were
dispersed in water and examined for aggregation and settling behaviour near its
isoelectric point (IEP). A series of settling experiments were conducted and
the results were analysed by photography and by Small Angle X-ray Scattering
(SAXS). The settling curve obtained from standard bed height measurement
experiments indicated two different types of behaviour, both of which were also
seen in the SAXS data. But the SAXS data were remarkably able to pick out the
rapid settling regime as a result of the high temporal resolution (10s) used.
By monitoring the SAXS intensity, it was further possible to record the
particle aggregation process for the first time. Optical microscopy images were
produced on drying and dried droplets extracted from the suspension at various
times. Dried deposits showed the rapid decrease in the number of very large
particles with time which qualitatively validates the SAXS prediction, and
therefore its suitability as a tool to study unstable polydisperse colloids.
Keywords: Nanoparticles, nanofluids, polydisperse, aggregation, settling,
alumina, microscopy, SAX
Analyzing the Impacts of Off-Road Vehicle (ORV) Trails on Watershed Processes in Wrangell-St. Elias National Park and Preserve, Alaska
Trails created by off-road vehicles (ORV) in boreal lowlands are known to cause local impacts, such as denuded vegetation, soil erosion, and permafrost thaw, but impacts on stream and watershed processes are less certain. In Wrangell-St. Elias National Park and Preserve (WRST), Alaska, ORV trails have caused local resource damage in intermountain lowlands with permafrost soils and abundant wetlands and there is a need to know whether these impacts are more extensive. Comparison of aerial photography from 1957, 1981, and 2004 coupled with ground surveys in 2009 reveal an increase in trail length and number and show an upslope expansion of a trail system around points of stream channel initiation. We hypothesized that these impacts could also cause premature initiation and headward expansion of channels because of lowered soil resistance and greater runoff accumulation as trails migrate upslope. Soil monitoring showed earlier and deeper thaw of the active layer in and adjacent to trails compared to reference sites. Several rainfall-runoff events during the summer of 2009 showed increased and sustained flow accumulation below trail crossings and channel shear forces sufficient to cause headward erosion of silt and peat soils. These observations of trail evolution relative to stream and wetland crossings together with process studies suggest that ORV trails are altering watershed processes. These changes in watershed processes appear to result in increasing drainage density and may also alter downstream flow regimes, water quality, and aquatic habitat. Addressing local land-use disturbances in boreal and arctic parklands with permafrost soils, such as WRST, where responses to climate change may be causing concurrent shifts in watershed processes, represents an important challenge facing resource managers
Abnormal resting-state cortical coupling in chronic tinnitus
<p>Abstract</p> <p>Background</p> <p>Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks.</p> <p>Results</p> <p>The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1) For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz) band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2) For both groups: an inverse relationship (r = -.71) of the alpha and gamma network coupling. 3) A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4) An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions.</p> <p>Conclusion</p> <p>In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial Magnetic Stimulation (TMS).</p
Flip-Flop of Phospholipids in Proteoliposomes Reconstituted from Detergent Extract of Chloroplast Membranes: Kinetics and Phospholipid Specificity
Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6±1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents
- …