285 research outputs found

    First direct observation of the Van Hove singularity in the tunneling spectra of cuprates

    Get PDF
    In two-dimensional lattices the electronic levels are unevenly spaced, and the density of states (DOS) displays a logarithmic divergence known as the Van Hove singularity (VHS). This is the case in particular for the layered cuprate superconductors. The scanning tunneling microscope (STM) probes the DOS, and is therefore the ideal tool to observe the VHS. No STM study of cuprate superconductors has reported such an observation so far giving rise to a debate about the possibility of observing directly the normal state DOS in the tunneling spectra. In this study, we show for the first time that the VHS is unambiguously observed in STM measurements performed on the cuprate Bi-2201. Beside closing the debate, our analysis proves the presence of the pseudogap in the overdoped side of the phase diagram of Bi-2201 and discredits the scenario of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    (pi,pi)-electronic order in iron arsenide superconductors

    Full text link
    The distribution of valence electrons in metals usually follows the symmetry of an ionic lattice. Modulations of this distribution often occur when those electrons are not stable with respect to a new electronic order, such as spin or charge density waves. Electron density waves have been observed in many families of superconductors[1-3], and are often considered to be essential for superconductivity to exist[4]. Recent measurements[5-9] seem to show that the properties of the iron pnictides[10, 11] are in good agreement with band structure calculations that do not include additional ordering, implying no relation between density waves and superconductivity in those materials[12-15]. Here we report that the electronic structure of Ba1-xKxFe2As2 is in sharp disagreement with those band structure calculations[12-15], instead revealing a reconstruction characterized by a (pi,pi) wave vector. This electronic order coexists with superconductivity and persists up to room temperature

    STM imaging of symmetry-breaking structural distortion in the Bi-based cuprate superconductors

    Get PDF
    A complicating factor in unraveling the theory of high-temperature (high-Tc) superconductivity is the presence of a "pseudogap" in the density of states, whose origin has been debated since its discovery [1]. Some believe the pseudogap is a broken symmetry state distinct from superconductivity [2-4], while others believe it arises from short-range correlations without symmetry breaking [5,6]. A number of broken symmetries have been imaged and identified with the pseudogap state [7,8], but it remains crucial to disentangle any electronic symmetry breaking from pre-existing structural symmetry of the crystal. We use scanning tunneling microscopy (STM) to observe an orthorhombic structural distortion across the cuprate superconducting Bi2Sr2Can-1CunO2n+4+x (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion symmetry breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field, and doping, that it cannot be the long-sought pseudogap state. To detect this picometer-scale variation in lattice structure, we have implemented a new algorithm which will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.Comment: 4 figure

    Appearance of fluctuating stripes at the onset of the pseudogap in the high-Tc Superconductor Bi2Sr2CaCu2O8+x

    Full text link
    Doped Mott insulators have been shown to have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper-oxides, doping also gives rise to the pseudogap state, which transforms into a high temperature superconductor with sufficient doping or by reducing the temperature. A long standing question has been the interplay between pseudogap, which is generic to all hole-doped cuprates, and stripes, whose static form occurs in only one family of cuprates over a narrow range of the phase diagram. Here we examine the spatial reorganization of electronic states with the onset of the pseudogap state at T* in the high-temperature superconductor Bi2Sr2CaCu2O8+x using spectroscopic mapping with the scanning tunneling microscope (STM). We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per Cu). While demonstrating that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the cuprate phase diagram, our experiments indicate that they are a consequence of pseudogap behavior rather than its cause.Comment: preprint version, 25 pages including supplementary informatio

    Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    Full text link
    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (Tc), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors above Tc, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.Comment: Nature Physics advance online publication, 04/04/2010 (doi:10.1038/nphys1632) Author's version of the paper

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Error correction in bimanual coordination benefits from bilateral muscle activity: evidence from kinesthetic tracking

    Get PDF
    Although previous studies indicated that the stability properties of interlimb coordination largely result from the integrated timing of efferent signals to both limbs, they also depend on afference-based interactions. In the present study, we examined contributions of afference-based error corrections to rhythmic bimanual coordination using a kinesthetic tracking task. Furthermore, since we found in previous research that subjects activated their muscles in the tracked (motor-driven) arm, we examined the functional significance of this activation to gain more insight into the processes underlying this phenomenon. To these aims, twelve subjects coordinated active movements of the right hand with motor-driven oscillatory movements of the left hand in two coordinative patterns: in-phase (relative phase 0°) and antiphase (relative phase 180°). They were either instructed to activate the muscles in the motor-driven arm as if moving along with the motor (active condition), or to keep these muscles as relaxed as possible (relaxed condition). We found that error corrections were more effective in in-phase than in antiphase coordination, resulting in more adequate adjustments of cycle durations to compensate for timing errors detected at the start of each cycle. In addition, error corrections were generally more pronounced in the active than in the relaxed condition. This activity-related difference was attributed to the associated bilateral neural control signals (as estimated using electromyography), which provided an additional reference (in terms of expected sensory consequences) for afference-based error corrections. An intimate relation was revealed between the (integrated) motor commands to both limbs and the processing of afferent feedback

    Direct evidence for a competition between the pseudogap and high temperature superconductivity in the cuprates

    Full text link
    A pairing gap and coherence are the two hallmarks of superconductivity. In a classical BCS superconductor they are established simultaneously at Tc. In the cuprates, however, an energy gap (pseudogap) extends above Tc. The origin of this gap is one of the central issues in high temperature superconductivity. Recent experimental evidence demonstrates that the pseudogap and the superconducting gap are associated with different energy scales. It is however not clear whether they coexist independently or compete. In order to understand the physics of cuprates and improve their superconducting properties it is vital to determine whether the pseudogap is friend or foe of high temperature supercondctivity. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that the pseudogap and high temperature superconductivity represent two competing orders. We find that there is a direct correlation between a loss in the low energy spectral weight due to the pseudogap and a decrease of the coherent fraction of paired electrons. Therefore, the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing in the region of momentum space where the superconducting gap is largest. This leads to a very unusual state in the underdoped cuprates, where only part of the Fermi surface develops coherence.Comment: Improved version was published in Natur

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex
    corecore