27 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury

    No full text
    Background and Purpose - In contrast to tissue-type plasminogen activator (tPA), vampire bat ( Desmodus rotundus) salivary plasminogen activator ( desmoteplase [ DSPA]) does not promote excitotoxic injury when injected directly into the brain. We have compared the excitotoxic effects of intravenously delivered tPA and DSPA and determined whether DSPA can antagonize the neurotoxic and calcium enhancing effects of tPA. Methods - The brain striatal region of wild-type c57 Black 6 mice was stereotaxically injected with N-methyl-D-Aspartate ( NMDA); 24 hour later, mice received an intravenous injection of tPA or DSPA ( 10 mg/kg) and lesion size was assessed after 24 hours. Cell death and calcium mobilization studies were performed using cultures of primary murine cortical neurons. Results - NMDA-mediated injury was increased after intravenous administration of tPA, whereas no additional toxicity was seen after administration of DSPA. Unlike DSPA, tPA enhanced NMDA-induced cell death and the NMDA-mediated increase in intracellular calcium levels in vitro. Moreover, the enhancing effects of tPA were blocked by DSPA. Conclusions - Intravenous administration of tPA promotes excitotoxic injury, raising the possibility that leakage of tPA from the vasculature into the parenchyma contributes to brain damage. The lack of such toxicity by DSPA further encourages its use as a thrombolytic agent in the treatment of ischemic stroke
    corecore