365 research outputs found

    Braided racks, Hurwitz actions and Nichols algebras with many cubic relations

    Full text link
    We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.Comment: v2: 35 pages, 6 tables, 14 figure

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference

    Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit

    Get PDF
    BACKGROUND: Insects detect attractive and aversive chemicals using several families of chemosensory receptors, including the OR family of olfactory receptors, making these receptors appealing targets for the control of insects. Insect ORs are odorant-gated ion channels, comprised of at least one common subunit (the odorant receptor co-receptor subunit, Orco) and at least one variable odorant specificity subunit. Each of the many ORs of an insect species is activated or inhibited by an unique set of odorants that interact with the variable odorant specificity subunits, making the development of OR directed insect control agents complex and laborious. However, several N-,2-substituted triazolothioacetamide compounds (VUAA1, VU0450667 and VU0183254) were recently shown to act directly on the highly conserved Orco subunit, suggesting that broadly active compounds can be developed. We have explored the chemical space around the VUAA1 structure in order to identify new Orco ligands. PRINCIPAL FINDINGS: We screened ORs from several insect species, using heterologous expression in Xenopus oocytes and an electrophysiological assay, with a panel of 22 compounds structurally related to VUAA1. By varying the nitrogen position in the pyridine ring and altering the moieties decorating the phenyl ring, we identified two new agonists and a series of competitive antagonists. Screening smaller compounds, similar to portions of the VUAA1 structure, also yielded competitive antagonists. Importantly, we show that Orco antagonists inhibit odorant activation of ORs from several insect species. Detailed examination of one antagonist demonstrated inhibition to be through a non-competitive mechanism. CONCLUSIONS: A similar pattern of agonist and antagonist sensitivity displayed by Orco subunits from different species suggests a highly conserved binding site structure. The susceptibility to inhibition of odorant activation by Orco antagonism is conserved across disparate insect species, suggesing the ligand binding site on Orco as a promising target for the development of novel, broadly active insect repellants

    The role of clathrin in post-golgi trafficking in toxoplasma gondii

    Get PDF
    Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle

    Performance evaluation of the Pimaâ„¢ point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Point-of-care CD4 testing can provide immediate CD4 reporting at HIV-testing sites. This study evaluated performance of capillary blood sampling using the point-of-care Pima™ CD4 device in representative primary health care clinics doing HIV testing.</p> <p>Methods</p> <p>Prior to testing, prescribed capillary-sampling and instrument training was undertaken by suppliers across all sites. Matching venous EDTA samples were drawn throughout for comparison to laboratory predicate methodology (PLG/CD4). In Phase I, Pima™ cartridges were pipette-filled with EDTA venous blood in the laboratory (N = 100). In Phase II (N = 77), Pima™ CD4 with capillary sampling was performed by a single operator in a hospital-based antenatal clinic. During subsequent field testing, Pima™ CD4 with capillary sampling was performed in primary health care clinics on HIV-positive patients by multiple attending nursing personnel in a rural clinic (Phase-IIIA, N = 96) and an inner-city clinic (Phase-IIIB, N = 139).</p> <p>Results</p> <p>Pima™ CD4 compared favourably to predicate/CD4 when cartridges were pipette-filled with venous blood (bias -17.3 ± STDev = 36.7 cells/mm<sup>3</sup>; precision-to-predicate %CV < 6%). Decreased precision of Pima™ CD4 to predicate/CD4 (varying from 17.6 to 28.8%SIM CV; mean bias = 37.9 ± STDev = 179.5 cells/mm<sup>3</sup>) was noted during field testing in the hospital antenatal clinic. In the rural clinic field-studies, unacceptable precision-to-predicate and positive bias was noted (mean 28.4%SIM CV; mean bias = +105.7 ± STDev = 225.4 cells/mm<sup>3</sup>). With additional proactive manufacturer support, reliable performance was noted in the subsequent inner-city clinic field study where acceptable precision-to-predicate (11%SIM CV) and less bias of Pima™ to predicate was shown (BA bias ~11 ± STDev = 69 cells/mm<sup>3</sup>).</p> <p>Conclusions</p> <p>Variable precision of Pima™ to predicate CD4 across study sites was attributable to variable capillary sampling. Poor precision was noted in the outlying primary health care clinic where the system is most likely to be used. Stringent attention to capillary blood collection technique is therefore imperative if technologies like Pima™ are used with capillary sampling at the POC. Pima™ CD4 analysis with venous blood was shown to be reproducible, but testing at the point of care exposes operators to biohazard risk related to uncapping vacutainer samples and pipetting of blood, and is best placed in smaller laboratories using established principles of Good Clinical Laboratory Practice. The development of capillary sampling quality control methods that assure reliable CD4 counts at the point of care are awaited.</p

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Amino Acid Residues Contributing to Function of the Heteromeric Insect Olfactory Receptor Complex

    Get PDF
    Olfactory receptors (Ors) convert chemical signals—the binding of odors and pheromones—to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors. The functional insect Or comprises an odor- or pheromone-specific Or subunit and the Orco co-receptor, which is highly conserved in all insect species. The insect Or-Orco complex has been proposed to function as a novel type of ligand-gated nonselective cation channel possibly modulated by G-proteins. However, the Or-Orco proteins lack homology to any known family of ion channel and lack known functional domains. Therefore, the mechanisms by which odors activate the Or-Orco complex and how ions permeate this complex remain unknown. To begin to address the relationship between Or-Orco structure and function, we performed site-directed mutagenesis of all 83 conserved Glu, Asp, or Tyr residues in the silkmoth BmOr-1-Orco pheromone receptor complex and measured functional properties of mutant channels expressed in Xenopus oocytes. 13 of 83 mutations in BmOr-1 and BmOrco altered the reversal potential and rectification index of the BmOr-1-Orco complex. Three of the 13 amino acids (D299 and E356 in BmOr-1 and Y464 in BmOrco) altered both current-voltage relationships and K+ selectivity. We introduced the homologous Orco Y464 residue into Drosophila Orco in vivo, and observed variable effects on spontaneous and evoked action potentials in olfactory neurons that depended on the particular Or-Orco complex examined. Our results provide evidence that a subset of conserved Glu, Asp and Tyr residues in both subunits are essential for channel activity of the heteromeric insect Or-Orco complex

    Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii

    Get PDF
    Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depo-lymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites
    • …
    corecore