15 research outputs found

    Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution

    Get PDF
    Tyrosinase encapsulated silica aerogel (TESA) was synthesized via an alcohol-free colloidal sol–gel route at room temperature and at neutral pH. Characterization on TESA indicated that 98% of enzyme was effectively loaded and located inside the aerogel network. TESA without solvent extraction showed higher tyrosinase activity than TESA extracted by amyl acetate/acetone (v/v:1/1). Stability of tyrosinase in TESA was enhanced towards extreme temperature, acidic and basic conditions. Optimization study indicates that 500 U enzyme/g silica aerogel; aged for 2 days, showed superior performance in the oxidation of catechol. The activity of TESA was remarkably enhanced; which was active at a wider temperature (up to 80 °C) and pH range (4–9). In contrast, free tyrosinase was totally inactive at these pH values and temperature >55 °C. TESA successfully removed about 90% of phenol in aqueous solution after 3 h of contact time with excellent reusability

    Co-immobilization and co-localization of multi-enzyme systems on porous materials

    No full text
    The immobilization of multi-enzyme systems on solid materials is rapidly gaining interest for the construction of biocatalytic cascades with biotechnological applications in industry. The heterogenization and control of the spatial organization across porous materials of the system components are essentials to improve the performance of the process providing higher robustness, yield, and productivity. In this chapter, the co-immobilization and co-localization of a bi-enzymatic bio-redox orthogonal cascade with in situ cofactor regeneration are described. An NADH-dependent alcohol dehydrogenase catalyzes the asymmetric reduction of 2,2,2 trifluoroacetophenone using an NADH regeneration system consisting of a glutamate dehydrogenase and glutamic acid. Three different spatial organizations of the enzymes were compared in terms of cofactor-recycling efficiency. Furthermore, we demonstrated how the co-localization and uniform distribution (by controlling the enzyme immobilization rate) of the main and recycling dehydrogenases inside the same porous particle lead to enhance the cofactor-recycling efficiency of the bi-enzymatic bio-redox systems.Peer reviewe
    corecore