3 research outputs found

    Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How Far Have We Come?

    Get PDF
    Tanaidaceans are small peracarid crustaceans which occur in all marine habitats, over the full range of depths, and rarely into fresh waters. Yet they have no obligate dispersive phase in their life-cycle. Populations are thus inevitably isolated, and allopatric speciation and high regional diversity are inevitable; cosmopolitan distributions are considered to be unlikely or non-existent. Options for passive dispersion are discussed. Tanaidaceans appear to have first evolved in shallow waters, the region of greatest diversification of the Apseudomorpha and some tanaidomorph families, while in deeper waters the apseudomorphs have subsequently evolved two or three distinct phyletic lines. The Neotanaidomorpha has evolved separately and diversified globally in deep waters, and the Tanaidomorpha has undergone the greatest evolution, diversification and adaptation, to the point where some of the deep-water taxa are recolonizing shallow waters. Analysis of their geographic distribution shows some level of regional isolation, but suffers from inclusion of polyphyletic taxa and a general lack of data, particularly for deep waters. It is concluded that the diversity of the tanaidomorphs in deeper waters and in certain ocean regions remains to be discovered; that the smaller taxa are largely understudied; and that numerous cryptic species remain to be distinguished. Thus the number of species currently recognized is likely to be an order of magnitude too low, and globally the Tanaidacea potentially rival the Amphipoda and Isopoda in diversity

    Effects of restoration management on the estuarine isopod Cyathura carinata: mediation by trematodes and habitat change

    Get PDF
    Abstract A restoration programme was introduced in the Mondego Estuary (Portugal) to recover seagrass beds of Zostera noltii endangered by eutrophication. A long-term survey of 10 years was used to assess the development of the processes involved, focusing one of the key species (Cyathura carinata, Isopoda). The mitigation measures implemented since 1998 (nutrient loading reduction, freshwater circulation improvement and seagrass bed protection) enhanced water quality and seagrass recovery, thus preventing the development of macroalgal blooms. C. carinata was resilient to the occurrence of floods and macroalgal blooms, although both events caused dispersion of individuals. This isopod was not much influenced by the changes occurring in the estuary, showing an unalterable population structure during the entire study period. After 1998, its density and biomass became more stable at an inner unvegetated sand flat area, where this isopod was most abundant; its population slightly increased in a bare mud flat at the middle section of the estuary; but it could not establish successfully in a downstream Z. noltii bed, contrarily to other common estuarine species. Apart from other unknown reasons, the disrupted balanced between trematodes and their hosts, caused by the eutrophication processes, may have an important role in the discontinuity of C. carinata at the Z. noltii bed. If the intertidal areas become fully restored to the original seagrass coverage, high prevalence and intensity trematodes may prevent this isopod and other crustaceans from recovering within the intervened areas, by enhancing host mortality and recruitment failure. In order to avoid this kind of situation, it may be necessary to survey the levels of parasite infestation within the target hosts and safeguard areas where crustaceans present healthy populations
    corecore