34 research outputs found
Nicotinic acetylcholine receptor subunit variants are associated with blood pressure; findings in the Old Order Amish and replication in the Framingham Heart Study
<p>Abstract</p> <p>Background</p> <p>Systemic blood pressure, influenced by both genetic and environmental factors, is regulated via sympathetic nerve activity. We assessed the role of genetic variation in three subunits of the neuromuscular nicotinic acetylcholine receptor positioned on chromosome 2q, a region showing replicated evidence of linkage to blood pressure.</p> <p>Methods</p> <p>We sequenced <it>CHRNA1</it>, <it>CHRND </it>and <it>CHRNG </it>in 24 Amish subjects from the Amish Family Diabetes Study (AFDS) and identified 20 variants. We then performed association analysis of non-redundant variants (n = 12) in the complete AFDS cohort of 1,189 individuals, and followed by genotyping blood pressure-associated variants (n = 5) in a replication sample of 1,759 individuals from the Framingham Heart Study (FHS).</p> <p>Results</p> <p>The minor allele of a synonymous coding SNP, rs2099489 in <it>CHRNG</it>, was associated with higher systolic blood pressure in both the Amish (p = 0.0009) and FHS populations (p = 0.009) (minor allele frequency = 0.20 in both populations).</p> <p>Conclusion</p> <p><it>CHRNG </it>is currently thought to be expressed only during fetal development. These findings support the Barker hypothesis, that fetal genotype and intra-uterine environment influence susceptibility to chronic diseases later in life. Additional studies of this variant in other populations, as well as the effect of this variant on acetylcholine receptor expression and function, are needed to further elucidate its potential role in the regulation of blood pressure. This study suggests for the first time in humans, a possible role for genetic variation in the neuromuscular nicotinic acetylcholine receptor, particularly the gamma subunit, in systolic blood pressure regulation.</p
RNA-based gene duplication: mechanistic and evolutionary insights.
Gene copies that stem from the mRNAs of parental source genes have long been viewed as evolutionary dead-ends with little biological relevance. Here we review a range of recent studies that have unveiled a significant number of functional retroposed gene copies in both mammalian and some non-mammalian genomes. These studies have not only revealed previously unknown mechanisms for the emergence of new genes and their functions but have also provided fascinating general insights into molecular and evolutionary processes that have shaped genomes. For example, analyses of chromosomal gene movement patterns via RNA-based gene duplication have shed fresh light on the evolutionary origin and biology of our sex chromosomes