23 research outputs found

    The Excited States of Nucleic Acids

    No full text

    Breakdown of Kasha’s Rule in a Ubiquitous, Naturally Occurring, Wide Bandgap Aluminosilicate (Feldspar)

    Get PDF
    Excitation-energy-dependent emission (EDE) is well known from photoluminescence (PL) studies of polar solvents and carbon-based nanostructures. In polar solvents, this effect known as the 'red edge effect' (REE) is understood to arise from solute-solvent interactions, whereas, in case of carbon-based nanostructures, the origin is highly debated. Understanding this effect has important bearings on the potential applications of these materials. EDE has never been reported from large crystalline materials, except very recently by our group. Here, we make detailed investigations to understand the universality and the mechanism behind the EDE in a wide band gap aluminosilicate (feldspar), which comprises more than half of the Earth's crust, and is widely used in geophotonics (e.g., optical dating). We observe EDE up to 150 nm at room temperature in our samples, which is unprecedented in rigid macroscopic structures. Based on PL investigations at 295 K and 7 K, we present a novel model that is based on photoionisation of a deep lying defect and subsequent transport/relaxation of free electrons in the sub-conduction band tail states. Our model has important implications for potential photonic applications using feldspar, measurement of band tail width in wide bandgap materials, and understanding the EDE effect in other materials

    Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films

    No full text
    Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s)

    Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

    Get PDF
    The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope analyses of pyrite and chalcopyrite indicate a narrow range of ή34SVCD (− 0.2 to + 4.6 ‰), and no significant mass-independent fractionation (− 0.1 < Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu enrichment and narrow ή34S ranges. Although a possible explanation for some of these characteristics is leaching of S and metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system

    Luminescence of Polypeptides and Proteins

    No full text
    corecore