44,559 research outputs found
Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles
The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]
A flight-test evaluation of a go-around control system for a twin engine powered-lift STOL airplane
An automatic go-around control system was evaluated on the Augmentor Wing Jet Short Takeoff and Landing (STOL) Research Airplane (AWJSRA) as part of a study of an automatic landing system for a powered-lift STOL airplane. The results of the evaluation indicate that the go-around control system can successfully transition the airplane to a climb configuration from any initiation point during the glide-slope track or the flare maneuver prior to touchdown
Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane
An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings
Bessel beam propagation: Energy localization and velocity
The propagation of a Bessel beam (or Bessel-X wave) is analyzed on the basis
of a vectorial treatment. The electric and magnetic fields are obtained by
considering a realistic situation able to generate that kind of scalar field.
Specifically, we analyze the field due to a ring-shaped aperture over a
metallic screen on which a linearly polarized plane wave impinges. On this
basis, and in the far field approximation, we can obtain information about the
propagation of energy flux and the velocity of the energy.Comment: 6 pages, 4 figure
A flight investigation of a terminal area navigation and guidance concept for STOL aircraft
A digital avionics system referred to as STOLAND has been test-flown in the NASA CV-340 to obtain performance data for time-controlled guidance in the manual flight director mode. The advanced system components installed in the cockpit included an electronic attitude director indicator and an electronic multifunction display. Navigation guidance and control computations were all performed in the digital computer. Approach paths were flown which included a narrow 180-deg turn and a 1-min, 5-deg straight-in approach to the 30-m altitude go-around point. Results are presented for 20 approaches: (1) blended radio/inertial navigation using TACAN and a microwave scanning beam landing guidance system (MODILS) permitted a smooth transition from area navigation (TACAN) to precision terminal navigation (MODILS), (2) guidance system (flight director) performance measured at an altitude of 30.5 m was within that prescribed for category II CTOL operations on a standard runway, and (3) time of arrival at a point about 2 mi from touchdown was about 4 sec plus or minus sec later than the computed nominal arrival time
A flight investigation of a terminal area navigation and guidance concept for STOL aircraft
A digital avionics system was installed in the CV-340 transport aircraft. Flight tests were made to obtain preliminary performance data in the manual flight director mode using time controlled guidance. These tests provide a basis for selection of terminal area guidance, navigation, and control system concepts for short haul aircraft and for investigating operational procedures
Evaluation of a Multizone Impedance Eduction Method
A computational study is used to evaluate the PyCHE impedance eduction method developed at the NASA Langley Research Center. This method combines an aeroacoustic duct propagation code based on numerical solution to the convected Helmholtz equation with a global optimizer that uses the Differential Evolution algorithm. The efficacy of this method is evaluated with acoustic pressure data simulated to represent that measured with one-zone, two-zone, and three-zone liners mounted in the NASA Langley Grazing Flow Impedance Tube. The PyCHE method has a normalized impedance error of approximately 0.2 for (uniform) one-zone liners with a length of at least 5, and produces quite reasonable results for liners as short as 2. Whereas the impedance of the liner has an effect on eduction accuracy, the amount of attenuation is shown to be the dominant parameter. Similar results are observed for two-zone liners, for which the impedance of each zone is unique. The two-zone results also indicate it is more difficult to accurately educe resistance than reactance, and a zone length of at least 6 (slightly longer than for uniform liners) is needed to limit the normalized error to 0.2. The PyCHE method is also demonstrated to successfully educe the impedances for each zone of a three-zone liner. These results are sufficiently encouraging to warrant the continued usage of the PyCHE impedance eduction method for single and multizone liners
- …