16 research outputs found

    Acetylene reduction associated with zostera novazelandica Setch. and Spartina alterniflora Loisel., in Whangateau harbour, North Island, New Zealand

    Get PDF
    Nitrogen fixation (acetylene reduction) was investigated in Zostera novazelandica Setch. and Spartina alterniflora Loisel., in the North Island of New Zealand. Moderate rates of acetylene reduction were found in sediments in which plants were growing (means ± 95% confidence limit: 15.2 ± 2.8 |jmol C2H4 nrr2 h~l for Zostera and 24.7 ± 4.6 |amol C2H4 m~2 h"1 for Spartina). Activity was closely correlated with the dry weight of root; (r2 = 0.65, N = 15 for Zostera, and r2 = 0.85, A' =10 for Spartina). Sediment close to the plant beds, but without plants, exhibited only low rates of acetylene reduction (2.9 ± 2.2 and 4.5 ± l.OjLtmol C2H4 m~2 h"1, respectively). Sediments associated with Z. novazelandica and S. alterniflora in New Zealand exhibit moderate rates of nitrogenase activity compared to rates found in other countries. N fixation may contribute significantly to the nutrition of these plants in New Zealand estuaries

    Nitrogenase activity associated with codium species from New Zealand marine habitats

    Get PDF
    Nitrogenase activity, measured as acetylene reduction, was recorded at rates up to 1028 nmol.h \g * dry weight for Codium adhaerens (Cabr.) Ag. var. convolutum Dellow and Codium fragile (Sur.) Hariot subsp. tomentosoides (Van Goor) Silva collected from New Zealand habitats. In both species the ability to reduce acetylene is invariably associated with the presence of a heterocystous blue-green alga, Calothrix sp., epiphytic or embedded in the Codium thallus. A highly significant (P < 0.001) correlation between heterocyst frequency and nitrogenase activity was found. Nitrogenase and net photosynthesis of the Codium-Calothrix system have different steady-state responses to light intensity, and the kinetics of the two processes also differ in that nitrogenase is slow to respond to illumination or darkening. Glucose additions to Codium did not significantly increase nitrogenase activity. Nitrogenase is relatively insensitive to oxygen tension over the range 0-1.0 atm (0-1.033 kgf.cnT2) and still occurs at 1.5 atm (1.55 kgf.cm"2); this condition is unique in all nitrogenase systems thus far reported. Collectively these facts suggest that Calothrix is the agent primarily responsible for nitrogenase activity in these Codium species

    Effect of Coriaria arborea on seed banks during primary succession on Mt Tarawera, New Zealand

    Get PDF
    An experiment was conducted over two years to investigate the effect of Coriaria arborea, a native nitrogen-fixing shrub, on soil seed banks at sites representing a post-volcanic successional sequence on Mt Tarawera, New Zealand. The sites ranged from bare volcanic ash and lapilli substrate, through low-growing pre-Coriaria vegetation, to dense stands of Coriaria scrub. Soils (to a depth of 50 mm) under recently established Coriaria and older stands had more seedlings (1096 and 1585 seedlings 0.4 m-2, respectively) and species (37 and 45 species 0.4 m-2, respectively) emerge than where there was no Coriaria (243-320 seedlings 0.4 m-2, 14-25 species 0.4 m-2) and were the only soils with Coriaria seedlings. In total, 3488 seedlings representing 63 taxa were recorded. Seeds were still germinating after 24 months but rates declined markedly in the second year. For example, Coriaria reached a germination peak at 8 weeks but continued to germinate sporadically over the 2-year period. Tree species present in young forest within 0.5 km of the sites were absent. Establishment of Coriaria greatly accelerated an underlying trend of gradually increasing abundance and diversity of seeds in the soil with vegetation age. Adventive, wind-dispersed, and annual species were over-represented in the seed banks compared with the regional evergreen forest-dominated flora. These proportions are expected to decline as succession to forest gradually occurs

    Nitrogen fixation in the New Zealand mangrove (Avicennia marina (Forsk.) Vierh. var. resinifera (Forst f.) Bakh.)

    No full text
    Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = –0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 µmol of C2H4 m–2 h–1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)–1 h–1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore–1 h–1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore–1 h–1 were obtained

    Colonization dynamics and facilitative impacts of nitrogen-fixing shrub in primary succession

    Get PDF
    Whether nitrogen-fixing plants facilitate or inhibit species change in primary succession is best resolved by examining their impacts throughout the plant's entire life cycle from arrival to senescence. We experimentally examined two aspects of the successional impacts of a nitrogen-fixing shrub, Coriaria arborea, on Mt. Tarawera, a volcano in New Zealand: factors limiting Coriaria colonization and impacts of Coriaria-induced soil changes on a later successional tree, Griselinia littoralis. Coriaria germination was promoted by artificial wind protection and by the presence of heath shrubs. Transplanted Coriaria seedlings survived only if nodulated with Frankia, and the addition of Coriaria-enriched soils slowed Coriaria seedling growth and did not improve seedling survival. This explained why Coriaria seedlings were found mostly in protected habitats away from adult Coriaria, and suggested that Coriaria thickets are not self-replacing. Coriaria increased soil fertility by developing a 4 cm thick organic soil horizon that was richer in nitrogen (tenfold) and phosphorus (threefold) than pre-Coriaria stages. These soil changes resulted in three- to sixfold increases in growth of Griselinia when it was grown in Coriaria-enriched soils in a glasshouse. Coriaria's net effect on primary succession is facilitative, but the establishment of Coriaria is itself facilitated by the amelioration of the physical habitat by earlier colonists, suggesting facilitation is important throughout the life cycle of Coriaria. Sequential facilitative events determine the order of species replacements in this study but inhibition, linked to the developmental stages of Coriaria, may determine
    corecore