82 research outputs found

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    Investigation of Some Physical Properties of Accretion Induced Collapse in Producing Millisecond Pulsars

    Full text link
    We investigate some physical characteristics of Millisecond Pulsar (MSP) such as magnetic fields, spin periods and masses, that are produced by Accretion Induced Collapse (AIC) of an accreting white dwarf (WD) in stellar binary systems. We also investigate the changes of these characteristics during the mass-transfer phase of the system in its way to become a MSP. Our approach allows us to follow the changes in magnetic fields and spin periods during the conversion of WDs to MSPs via AIC process. We focus our attention mainly on the massive binary WDs (M > 1.0Msun) forming cataclysmic variables, that could potentially evolve to reach Chandrasekhar limit, thereafter they collapse and become MSPs. Knowledge about these parameters might be useful for further modeling of the observed features of AIC.Comment: 9 Pages, 4 figure

    Applied aspects of pineapple flowering

    Full text link

    A preliminary study into the use of ‘heat pipes’ to prevent high rigor temperature in beef carcasses by increasing cooling rate

    No full text
    Three experiments were conducted to investigate the use of a custom-made heat pipe to reduce muscle temperature in beef carcasses during the initial part of the refrigeration period post slaughter. The effects of muscle depth (Experiment 1) and radial distance from a heat pipe (Experiment 2) were investigated initially. Then the use of multiple heat pipes was compared with no heat pipes for the loin and hind leg regions of a carcass (Experiment 3). All three experiments were conducted at a commercial beef abattoir in Western Australia. Without heat pipes, the time taken for the temperature to fall to 35°C in the hind leg was 10, 90 and 300 min for depths of 25, 50 and 100 mm from the surface, respectively. Temperature increased with radial distance from a heat pipe and the relative differences in temperature between different positions increased with time. Temperatures 110 min after the commencement of cooling were 35.7, 36.8 and 38.3°C for 20, 40 and 80 mm from the heat pipe, compared with 39.8°C without the pipe. The loin cooled faster than the rump, which cooled faster than the leg. Heat pipes increased the rate of temperature loss in the leg but not the loin. The time taken for the leg temperature to reach 35°C, measured at a depth of 100 mm, reduced from 150 to 76 min. These experiments confirm that heat pipes containing methanol could be used to increase the rate of heat loss from leg muscles in beef carcasses. Further work is required to determine if the magnitude of these increases in cooling rate would improve eating quality for large carcasses

    Grain feeding increases core body temperature of beef cattle

    No full text
    The core body temperature and post slaughter loin temperatures of steers fed on grass pasture was compared with those of steers fed a grain-based feedlot diet. The feeding treatments were grass for 300 days (Grass), grass for 150 days then feedlot for 150 days (Short Feedlot) and feedlot for 300 days (Long Feedlot). Temperature telemeters were inserted under the peritoneum of the steers and temperature measured at intervals of 1 h for the 300 days, and then at intervals of 1 min for the 48-h period before slaughter. The pH and temperature decline post mortem was also measured. The carcasses of the feedlot steers were heavier and fatter than those from the Grass-fed steers. The core body temperature of the steers from the feedlot treatments was 0.3-0.4°C higher than for the Grass treatment at the time of slaughter. The loin temperature was higher in the feedlot treatments than the Grass treatment at all times measured post mortem as was the temperature at pH 6. Feedlotting can increase the likelihood of 'high rigor temperature' conditions of high temperature and low pH occurring in beef carcasses, due to an increase in core body temperature before slaughter, a decrease in the rate of cooling and an increase in the rate of pH decline post mortem. These effects are possibly due to a combination of a direct effect of feed type on body temperature as well as indirect effects on bodyweight and condition score

    The effects of an abnormal decrease in temperature on the Eastern Pacific reef-building coral Pocillopora verrucosa

    No full text
    Coral bleaching events are associated with abnormal increases in temperature, such as those produced during El Niño. Recently, a breakdown in the coral-dinoflagellate (genus Symbiodinium) endosymbiosis has been documented in corals exposed to anomalously cold-water temperatures associated with La Niña events. Given the ecological significance of such events, as well as the threat of global climate change, surprisingly little is known about the physiological response of corals to cold stress. This study evaluated some physiological effects of continuous temperature decline in colonies of the eastern Pacific reef-building coral Pocillopora verrucosa. Twenty days of incubation at 18.5-19.0 °C resulted in a substantial decrease in holobiont lipid and Chla content, as well as an increase in Symbiodinium density. These observations suggest a combination of symbiont acclimation due to the temperature decline and reallocation of carbon toward algal growth as opposed to translocation to the host coral. With a decreased availability of symbiont-derived carbon, the coral likely catabolized storage lipids in order to survive the stress event. Despite this stress and some tissue necrosis, no mortality was noted and corals recovered quickly when returned to the ambient temperature. As these results are in marked contrast to similar studies investigating elevated temperature on this coral from this same location, Pocillopora in the Mexican Central Pacific may be more prone to long-term damage and mortality during periods of ocean warming as opposed to ocean cooling. © 2013 Springer-Verlag Berlin Heidelberg
    corecore