163,181 research outputs found
Single-photon transport in a one dimentional waveguide coupling to a hybrid atom-optomechanical system
We explore theoretically the single-photon transport in a single-mode
waveguide that is coupled to a hybrid atom-optomechanical system in a strong
optomechanical coupling regime. Using a full quantum real-space approach,
transmission and reflection coefficients of the propagating single-photon in
the waveguide are ob- tained. The influences of atom-cavity detuning and the
dissipation of atom on the transport are also studied. Intriguingly, the
obtained spectral features can reveal the strong light-matter interaction in
this hybrid system.Comment: 7pages, 8figure
Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method
The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach
Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms
By strongly driving a cyclic-transition three-level artificial atom,
demonstrated by such as a flux-based superconducting circuit, we show that
coherent microwave signals can be excited along a coupled one-dimensional
transmission line. Typically, the intensity of the generated microwave is
tunable via properly adjusting the Rabi frequencies of the applied
strong-driving fields or introducing a probe field with the same frequency. In
practice, the system proposed here could work as an on-chip quantum device with
controllable atom-photon interaction to implement a total-reflecting mirror or
switch for the propagating probe field.Comment: 4 pages, 5 figure
Consensus analysis of multiagent networks via aggregated and pinning approaches
This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)
Helium star evolutionary channel to super-Chandrasekhar mass type Ia supernovae
Recent discovery of several overluminous type Ia supernovae (SNe Ia)
indicates that the explosive masses of white dwarfs may significantly exceed
the canonical Chandrasekhar mass limit. Rapid differential rotation may support
these massive white dwarfs. Based on the single-degenerate scenario, and
assuming that the white dwarfs would differentially rotate when the accretion
rate , employing Eggleton's
stellar evolution code we have performed the numerical calculations for
1000 binary systems consisting of a He star and a CO white dwarf (WD). We
present the initial parameters in the orbital period - helium star mass plane
(for WD masses of and , respectively), which
lead to super-Chandrasekhar mass SNe Ia. Our results indicate that, for an
initial massive WD of , a large number of SNe Ia may result from
super-Chandrasekhar mass WDs, and the highest mass of the WD at the moment of
SNe Ia explosion is 1.81 , but very massive () WDs
cannot be formed. However, when the initial mass of WDs is , the
explosive masses of SNe Ia are nearly uniform, which is consistent with the
rareness of super-Chandrasekhar mass SNe Ia in observations.Comment: 6 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
- …