30 research outputs found

    Attitude and Altitude Control of Trirotor UAV by Using Adaptive Hybrid Controller

    Get PDF
    The paper presents an adaptive hybrid scheme which is based on fuzzy regulation, pole-placement, and tracking (RST) control algorithm for controlling the attitude and altitude of trirotor UAV. The dynamic and kinematic model of Unmanned Aerial Vehicle (UAV) is unstable and nonlinear in nature with 6 degrees of freedom (DOF); that is why the stabilization of aerial vehicle is a difficult task. To stabilize the nonlinear behavior of our UAV, an adaptive hybrid controller algorithm is used, in which RST controller tuning is performed by adaptive gains of fuzzy logic controller. Simulated results show that fuzzy based RST controller gives better robustness as compared to the classical RST controller

    Adaptive Fault-Tolerant Tracking Control of Nonaffine Nonlinear Systems with Actuator Failure

    Get PDF
    This paper proposes an adaptive fault-tolerant control scheme for nonaffine nonlinear systems. A model approximation method which is a solution that bridges the gap between affine and nonaffine control systems is developed firstly. A joint estimation approach is based on unscented Kalman filter, in which both failure parameters and states are simultaneously estimated by means of the argument state vector composed of the unknown faults and states. Then, stability analysis is given for the closed-loop system. Finally, the proposed approach is verified using a three-degree-of-freedom simulation of a typical fighter aircraft and the significantly improved system response demonstrates the practical potential of the theoretic results obtained

    Clinical Implications of Unmasking Dormant Conduction After Circumferential Pulmonary Vein Isolation in Atrial Fibrillation Using Adenosine: A Systematic Review and Meta-Analysis

    Get PDF
    Purpose: Circumferential pulmonary vein isolation (CPVI) is a routine ablation strategy of atrial fibrillation (AF). The adenosine test can be used to unmask dormant conduction (DC) of pulmonary veins after CPVI, thereby demonstrating possible pulmonary vein re-connection and the need for further ablation. However, whether adenosine test could help improve the long term successful rate of CPVI is still controversial. This systemic review and meta-analysis was to determine the clinical utility of the adenosine test.Methods: PubMed, EMBASE, Web of Science and Cochrane Library database were searched through July 2016 to identify relevant studies using the keywords “dormant pulmonary vein conduction,” “adenosine test,” “circumferential pulmonary vein isolation,” and “atrial fibrillation.” A random-effects model was used to compare pooled outcomes and tested for heterogeneity.Results: A total of 17 studies including 5,169 participants were included in the final meta-analysis. Two groups of comparisons were classified: (1) Long-term successful rate in those AF patients underwent CPVI with and without adenosine test [Group A (+) and Group A (−)]; (2) Long-term successful rate in those patients who had adenosine test with and without dormant conduction [Group DC (+) and Group DC (−)]. The overall meta-analysis showed that no significant difference can be observed between Group A (+) and Group A (−) (RR 1.08; 95% CI 0.97–1.19; P = 0.16; I2 = 66%) and between Group DC (+) and Group DC (−) (RR 1.01; 95% CI 0.91–1.12; P = 0.88; I2 = 60%).Conclusion: Pooled meta-analysis suggested adenosine test may not improve long-term successful rate in AF patients underwent CPVI. Furthermore, AF recurrence may not be decreased by eliminating DC provoked by adenosine, even though adenosine test was applied after CPVI

    Controller for UAV to Oppose Different Kinds of Wind in the Environment

    No full text
    Small UAVs are susceptible to the external disturbance, especially the wind field disturbance in the atmosphere environment. As a result, UAV’s states including attitude, speed, and position are usually unable to track the desired control commands. In this paper, different types of wind fields which easily affect the UAV are summarized; furthermore, the mechanism of their wind fields affecting the UAV is first strictly analyzed. Next, a novel “reject external disturbance” flight mode for UAV is put forward to offset the trajectory deviation caused by side wind, which makes use of the wind speed information obtained by airspeed and ground speed of UAV. In order to implement the “reject external disturbance” flight mode, the Lyapunov stability theory-based variable model reference adaptive control (VMRAC) system is proposed, and it could also deal with the adverse effects of wind shear and turbulence on UAV flight. Finally, simulation results show that the proposed strategy can significantly improve the trajectory following quality of the UAV under wind disturbance

    Study on the Path of Ideological and Political Education in the Process of Training New Agricultural Science and Technology Talents

    No full text
    The training system of outstanding agricultural and forestry talents emphasizes "people-oriented and morality first". As the pillars of the national cause of agriculture, rural areas and farmers, agricultural and forestry college students not only share the commonness of ordinary college students, but also have the special attribute of professional group. This requires that ideological and political educators must pay attention to the particularity of this group of college students, so as to carry out ideological and political education work. Thus it can be seen that exploring the ideological and political education model in line with the characteristics of this kind of college students is of great practical significance to achieving the goal of moral education of excellent agricultural and forestry talents, to enhancing the effect of ideological and political education of agricultural and forestry college students and to promoting the all-round development of agricultural and forestry college students

    Coverage Path Planning of UAV Based on Linear Programming—Fuzzy C-Means with Pigeon-Inspired Optimization

    No full text
    In contrast to rotorcraft, fixed-wing unmanned aerial vehicles (UAVs) encounter a unique challenge in path planning due to the necessity of accounting for the turning radius constraint. This research focuses on coverage path planning, aiming to determine optimal trajectories for fixed-wing UAVs to thoroughly explore designated areas of interest. To address this challenge, the Linear Programming—Fuzzy C-Means with Pigeon-Inspired Optimization algorithm (LP-FCMPIO) is proposed. Initially considering the turning radius constraint, a linear-programming-based model for fixed-wing UAV coverage path planning is established. Subsequently, to partition multiple areas effectively, an improved fuzzy clustering algorithm is introduced. Employing the pigeon-inspired optimization algorithm as the final step, an approximately optimal solution is sought. Simulation experiments demonstrate that the LP-FCMPIO, when compared to traditional FCM, achieves a more balanced clustering effect. Additionally, in contrast to traditional PIO, the planned flight paths display improved coverage of task areas, with an approximately 27.5% reduction in the number of large maneuvers. The experimental results provide validation for the effectiveness of the proposed algorithm

    Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    No full text
    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability

    Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm

    No full text
    In this paper, a novel Model Reference Adaptive Control (MRAC)-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV). The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller consists of Fuzzy Proportional Integral Derivative (F-PID) and Fuzzy Proportional Derivative (F-PD) controllers. MRAC is used as the main controller for the dynamics, while the parameters of the adaptive controller are fine-tuned by the F-PD controller for the altitude control subsystem and the F-PID controller for the attitude control subsystem of the UAV. The stability of the system is ensured and proven by Lyapunov stability analysis. The proposed control algorithm is tested and verified using computer simulations for the trajectory tracking of the desired path as an input. The effectiveness of our proposed algorithm is compared with F-PID and the Fuzzy Logic Controller (FLC). Our proposed controller exhibits much less steady state error, quick error convergence in the presence of disturbance or noise, and model uncertainties

    Development of Acidification-resistant Organic Fertilizer for Improvement of Acid Red Soil in Guangxi

    No full text
    The soil in Guangxi has been severely acidified, restricting sustainable development of agriculture. In this paper, based on the screening of organic fertilizer additives, a method for the production of acidification-resistant organic fertilizer specific for acid red soil improvement was proposed, and the developed acidification-resistant organic fertilizer was used in sugarcane experiment. The results showed that in the treatment that the specific acidification-resistant organic fertilizer was applied, the yield of sugarcane significantly increased, the pH value of soil effectively increased, the physical and chemical properties of soil improved, and the contents of microorganisms and available nutrients in soil increased
    corecore