5,152 research outputs found
Transients in Power Systems
Power system engineering largely focuses on steady state analysis. The main areas of power system engineering are power flow studies and fault studies - both steady state technologies. But the world is largely transient, and power systems are always subject to time varying and short lived signals. This technical report concerns several important topics in transient analyses of power systems. The leading chapter deals with a new analytical tool-wavelets-for power system transients. Flicker and electric are furnace transients are discussed in Chapters I1 and IV. Chapter 111 deals with transients from shunt capacitor switching. The concluding chapters deal with transformer inrush current and non simultaneous pole closures of circuit breakers. This report was prepared by the students in EE532 at Purdue University. When I first came to Purdue in 1965, Professor El-Abiad was asking for student term projects which were turned into technical reports. I have \u27borrowed\u27 this idea and for many years we have produced technical reports from the power systems courses. The students get practice in writing reports, and the reader is able to get an idea of the coverage of our courses. I think that the students have done a good job on the subject of transients in power systems
Plate-impact loading of cellular structures formed by selective laser melting
Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd
Finite type approximations of Gibbs measures on sofic subshifts
Consider a H\"older continuous potential defined on the full shift
A^\nn, where is a finite alphabet. Let X\subset A^\nn be a specified
sofic subshift. It is well-known that there is a unique Gibbs measure
on associated to . Besides, there is a natural nested
sequence of subshifts of finite type converging to the sofic subshift
. To this sequence we can associate a sequence of Gibbs measures
. In this paper, we prove that these measures weakly converge
at exponential speed to (in the classical distance metrizing weak
topology). We also establish a strong mixing property (ensuring weak
Bernoullicity) of . Finally, we prove that the measure-theoretic
entropy of converges to the one of exponentially fast.
We indicate how to extend our results to more general subshifts and potentials.
We stress that we use basic algebraic tools (contractive properties of iterated
matrices) and symbolic dynamics.Comment: 18 pages, no figure
Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co
The nuclear structure of 67Co has been investigated through 67Fe beta-decay.
The 67Fe isotopes were produced at the LISOL facility in proton-induced fission
of 238U and selected using resonant laser ionization combined with mass
separation. The application of a new correlation technique unambiguously
revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492
keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a
spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at
492 keV, interpreted as a proton 1p-2h prolate intruder state.Comment: 4 pages, 5 figures, preprint submitted to Physical Review Letter
Dynamical spin susceptibility in La2 CuO4 studied by resonant inelastic x-ray scattering
Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary
excitations in solids. It is now widely applied to study magnetic excitations.
However, its complex cross-section means that RIXS has been more difficult to
interpret than inelastic neutron scattering (INS). Here we report
high-resolution RIXS measurements of magnetic excitations of La2CuO4, the
antiferromagnetic parent of one system of high-temperature superconductors. At
high energies (~2 eV), the RIXS spectra show angular-dependent dd orbital
excitations which are found to be in good agreement with single-site multiplet
calculations. At lower energies (<0.3 eV), we show that the
wavevector-dependent RIXS intensities are proportional to the product of the
single-ion spin-flip cross section and the dynamical susceptibility of the
spin-wave excitations. When the spin-flip crosssection is dividing out, the
RIXS magnon intensities show a remarkable resemblance to INS data. Our results
show that RIXS is a quantitative probe the dynamical spin susceptibility in
cuprate and therefore should be used for quantitative investigation of other
correlated electron materials.Comment: 12 page
Crossover between Thermally Assisted and Pure Quantum Tunneling in Molecular Magnet Mn12-Acetate
The crossover between thermally assisted and pure quantum tunneling has been
studied in single crystals of high spin (S=10) uniaxial molecular magnet Mn12
using micro-Hall-effect magnetometry. Magnetic hysteresis and relaxation
experiments have been used to investigate the energy levels that determine the
magnetization reversal as a function of magnetic field and temperature. These
experiments demonstrate that the crossover occurs in a narrow (0.1 K) or broad
(1 K) temperature interval depending on the magnitude of the field transverse
to the anisotropy axis.Comment: 5 pages, 4 figure
Nature of yrast excitations near N=40: Level structure of Ni-67
Excited states in Ni-67 were populated in deep-inelastic reactions of a Ni-64
beam at 430 MeV on a thick U-238 target. A level scheme built on the previously
known 13 micro-s isomer has been delineated up to an excitation energy of ~5.3
MeV and a tentative spin and parity of (21/2-). Shell model calculations have
been carried out using two effective interactions in the f5/2pg9/2 model space
with a Ni-56 core. Satisfactory agreement between experiment and theory is
achieved for the measured transition energies and branching ratios. The
calculations indicate that the yrast states are associated with rather complex
configurations, herewith demonstrating the relative weakness of the N=40
subshell gap and the importance of multi particle-hole excitations involving
the g9/2 neutron orbital.Comment: Accepted by Physical Review
- …