23 research outputs found

    On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory

    Get PDF
    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca2+-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel

    TsTX-IV, a short chain four-disulfide-bridged neurotoxin from Tityus serrulatus venom which acts on Ca2+-activated K+ channels

    No full text
    The primary structure of TsTX-IV, a neurotoxin isolated from Tityus serrulatus scorpion venom, is reported. Its amino acid sequence was determined by automated Edman sequential degradation of the reduced and carboxymethylated toxin and of relevant peptides obtained by digestion with Staphylococcus aureus strain V8 protease or trypsin and cleavage by CNBr. The complete sequence showed 41 amino acid residues, which account for an estimated molecular weight of 4520, and eight half-cystine residues which cross-link the toxin molecule with four disulfide bonds. The molecular weight determined by mass spectrometry was 4518, Comparison of this sequence with those from other scorpion toxins showed a resemblance with toxins which act on different types of K+ channels, TsTx-IV was able to block Ca2+-activated K+ channels of high conductance. TsTX-IV is the first four-disulfide-bridged short toxin from T. serrulatus so far completely sequenced. (C) 1999 Elsevier Science Ltd. All rights reserved.37465166

    Connexins and pannexins: Coordinating cellular communication in the testis and epididymis

    No full text
    Gap junctions and connexins are critical for coordinating cellular functions in complex epithelia. In recent years there has been increased interest in understanding the regulation and function of gap junctions in both the testis and epididymis. Studies in transgenic mice in which connexin 43 (Cx43) is mutated or is knocked down only in Sertoli cells have demonstrated the essential role of Cx43 in spermatogenesis and differentiation of Sertoli cells. In the epididymis developmental studies have shown a role for numerous connexins in the differentiation of epithelial cells and communication between the basal cells and both principal and clear cells. In both tissues several factors, such thyroid hormones and androgens, are important in regulating expression and function of connexins. Pannexins, which form cellular channels but are structurally similar to gap junction proteins, have been identified in both testis and epididymis and, in the epididymis, are regulated by androgens. The objective of this review is to summarize the advances that have been made on the role and regulation of connexins and pannexins in the testis and epididymis and their implication in spermatogenesis and sperm maturation
    corecore