4,454 research outputs found
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip
Vascular plants rely on differences of osmotic pressure to export sugars from
regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this
process, known as M\"unch pressure flow, the loading of sugars from
photosynthetic cells to the export conduit (the phloem) is crucial, as it sets
the pressure head necessary to power long-distance transport. Whereas most
herbaceous plants use active mechanisms to increase phloem concentration above
that of the photosynthetic cells, in most tree species, for which transport
distances are largest, loading seems to occur via passive symplastic diffusion
from the mesophyll to the phloem. Here, we use a synthetic microfluidic model
of a passive loader to explore the nonlinear dynamics that arise during export
and determine the ability of passive loading to drive long-distance transport.
We first demonstrate that in our device, phloem concentration is set by the
balance between the resistances to diffusive loading from the source and
convective export through the phloem. Convection-limited export corresponds to
classical models of M\"unch transport, where phloem concentration is close to
that of the source; in contrast, diffusion-limited export leads to small phloem
concentrations and weak scaling of flow rates with the hydraulic resistance. We
then show that the effective regime of convection-limited export is predominant
in plants with large transport resistances and low xylem pressures. Moreover,
hydrostatic pressures developed in our synthetic passive loader can reach
botanically relevant values as high as 10 bars. We conclude that passive
loading is sufficient to drive long-distance transport in large plants, and
that trees are well suited to take full advantage of passive phloem loading
strategies
Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions
Following up on recent work in the context of ordinary fluids, we study the
equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary
stationary background spacetime, and with arbitrary stationary background gauge
fields, in the long wavelength expansion. We argue that this partition function
is generated by a 3 dimensional Euclidean effective action for the massless
Goldstone field. We parameterize the general form of this action at first order
in the derivative expansion. We demonstrate that the constitutive relations of
relativistic superfluid hydrodynamics are significantly constrained by the
requirement of consistency with such an effective action. At first order in the
derivative expansion we demonstrate that the resultant constraints on
constitutive relations coincide precisely with the equalities between
hydrodynamical transport coefficients recently derived from the second law of
thermodynamics.Comment: 46 page
Site-specific incorporation of phosphotyrosine using an expanded genetic code.
Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination
A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues
Purpose: Prostate-specific antigen (PSA)-based screening for prostate cancer (PC) has dramatically increased early diagnosis. Current imaging techniques are not optimal to stage early PC adequately. A promising alternative to PC imaging is peptide-based scintigraphy using radiolabelled bombesin (BN) analogues that bind to gastrin-releasing peptide receptors (GRPR) being overexpressed in PC. When labelled to appropriate radionuclides BN targeting of GRPRs may also provide applications for peptide radionuclide receptor therapy (PRRT). Assessment studies under identical experimental conditions allowing a reliable comparison of the potential of such analogues are lacking. This study was performed to evaluate and directly compare five promising radiolabelled BN analogues for their targeting efficacy for PC under standardised conditions. Methods: The BN agonists [111In]DOTA-PESIN, [111In]AMBA, [111In]MP2346 and [111In]MP2653 and one antagonist [99mTc]Demobesin-1 were evaluated in GRPR-overexpressing human PC-3 tumou
Constraints on Fluid Dynamics from Equilibrium Partition Functions
We study the thermal partition function of quantum field theories on
arbitrary stationary background spacetime, and with arbitrary stationary
background gauge fields, in the long wavelength expansion. We demonstrate that
the equations of relativistic hydrodynamics are significantly constrained by
the requirement of consistency with any partition function. In examples at low
orders in the derivative expansion we demonstrate that these constraints
coincide precisely with the equalities between hydrodynamical transport
coefficients that follow from the local form of the second law of
thermodynamics. In particular we recover the results of Son and Surowka on the
chiral magnetic and chiral vorticity flows, starting from a local partition
function that manifestly reproduces the field theory anomaly, without making
any reference to an entropy current. We conjecture that the relations between
transport coefficients that follow from the second law of thermodynamics agree
to all orders in the derivative expansion with the constraints described in
this paper.Comment: Typos corrected, References adde
Holographic two dimensional QCD and Chern-Simons term
We present a holographic realization of large Nc massless QCD in two
dimensions using a D2/D8 brane construction. The flavor axial anomaly is dual
to a three dimensional Chern-Simons term which turns out to be of leading
order, and it affects the meson spectrum and holographic renormalization in
crucial ways. The massless flavor bosons that exist in the spectrum are found
to decouple from the heavier mesons, in agreement with the general lore of
non-Abelian bosonization. We also show that an external dynamical photon
acquires a mass through the three dimensional Chern-Simons term as expected
from the Schwinger mechanism. Massless two dimensional QCD at large Nc exhibits
anti-vector-meson dominance due to the axial anomaly.Comment: 22 page
Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity
The holographic charged fluid with anomalous current in Einstein-Maxwell
gravity has been generalized from the infinite boundary to the finite cutoff
surface by using the gravity/fluid correspondence. After perturbing the boosted
Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell
gravity with the Chern-Simons term, we obtain the first order perturbative
gravitational and Maxwell solutions, and calculate the stress tensor and
charged current of the dual fluid at finite cutoff surfaces which contains
undetermined parameters after demanding regularity condition at the future
horizon. We adopt the Dirichlet boundary condition and impose the Landau frame
to fix these parameters, finally obtain the dependence of transport
coefficients in the dual stress tensor and charged current on the arbitrary
radical cutoff . We find that the dual fluid is not conformal, but it has
vanishing bulk viscosity, and the shear viscosity to entropy density ratio is
universally . Other transport coefficients of the dual current turns
out to be cutoff-dependent. In particular, the chiral vortical conductivity
expressed in terms of thermodynamic quantities takes the same form as that of
the dual fluid at the asymptotic AdS boundary, and the chiral magnetic
conductivity receives a cutoff-dependent correction which vanishes at the
infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos
corrected, version accepted for publication in JHE
Solitary waves in the Nonlinear Dirac Equation
In the present work, we consider the existence, stability, and dynamics of
solitary waves in the nonlinear Dirac equation. We start by introducing the
Soler model of self-interacting spinors, and discuss its localized waveforms in
one, two, and three spatial dimensions and the equations they satisfy. We
present the associated explicit solutions in one dimension and numerically
obtain their analogues in higher dimensions. The stability is subsequently
discussed from a theoretical perspective and then complemented with numerical
computations. Finally, the dynamics of the solutions is explored and compared
to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger
equation. A few special topics are also explored, including the discrete
variant of the nonlinear Dirac equation and its solitary wave properties, as
well as the PT-symmetric variant of the model
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
- …
